Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Understanding ettringite in cement-based materials and reasonable control

来源: | 作者:佚名 | 发布时间 :2023-11-17 | 336 次浏览: | Share:

Ettringite (AFt) is a hydrous sulfoaluminate mineral, often written as 3CaO·Al2O3·3CaSO4·32H2O. Ettringite is the early hydration product of Portland cement and the main hydration product of sulfoaluminate cement. In the early hydration process of Portland cement, gypsum reacts with aluminate or ferric aluminate minerals to form ettringite, which delays the hydration of cement and can play an early strength role. In sulfoaluminate cement, calcium sulfoaluminate mineral reacts with gypsum under the condition of water to form ettringite, accounting for 50% to 60% of the total hydration products, which is the main factor determining the early strength development of sulfoaluminate cement. At the same time, ettringite is also the main factor for the expansion of some calcium sulfoaluminate expanders [1]. Ettringstone can be said to be everywhere, not only limited to the well-known hydration products of cement, but the broad scope of ettringstone exists in a wider range.

1. Basic characteristics of ettringstone:

Ettringite crystals belong to the tripartite system, and the cell parameters are c=2.15nm, a=b=1.125nm. The composition of ettringite can be expressed as {Ca6[Al(OH)6]2·2H2O}·(SO4)3·2H2O, and its basic structural unit is -- cylinder {Ca6[Al(OH)6]2·2H2O}6+, SO42- ions and other water molecules are connected with these positively charged cylinders. That is, the crystal structure of ettringite is composed of columns parallel to the C-crystal axis, and the remaining water molecules and sulfate ions occupy the pores between the columns [2-3]. Hartman et al. [4] used deuterium atom (D atom), the isotope of hydrogen, and combined neutron diffraction technology with full spectrum fitting and finishing technology to more accurately determine the positions of all atoms in ettringite crystals, especially the positions of O and H atoms, and gave a more intuitive crystal structure diagram

It is generally believed that ettringite in cement concrete is mainly needle-shaped, but these ettringite crystals are often clustered together in different forms, so radial, annular, spherical or massive ettringite clusters are often observed in the size range of 100~300μm. However, due to the different synthesis methods and conditions of ettringite, the morphologies of the synthesized ettringite are quite different, and some new morphologies are even found, such as tubular, cylindrical and hexagonal columns

2. Synthesis method and influencing factors of ettringite:

At present, the synthesis methods of ettringite are mainly single ore hydration and solution synthesis methods, single ore hydration method generally uses tricalcium aluminate and gypsum or calcium sulfoaluminate and gypsum for hydration synthesis of ettringite, solution synthesis method uses calcium hydroxide and aluminum sulfate reaction to synthesize ettringite.

Theoretically, as long as the relevant ions in the solution reach a certain degree of saturation, ettringite crystals will be formed and precipitated, so the concentration of ions in the reaction solution, temperature, pH and formation space and other factors have a great impact on the formation of ettringite. The effects of synthesis temperature and liquid pH value on ettringite are briefly introduced.

2.1 Temperature

At home and abroad, it is agreed that temperature has an important effect on the stability of ettringite, and the stable temperature of ettringite in cement is about 70℃. YukieShimada believes that ettringite will transform into AFm phase in alkaline solution at 80℃, and the morphology and size of ettringite will decrease with increasing temperature, whether in cement slurry or chemical reagents. However, these studies mainly focus on the stability of ettringite synthesis at different temperatures. The study of Zhang Wensheng et al. showed that the formation of ettringite could be promoted with the appropriate increase of temperature. At 80℃, the reaction basically directly formed ettringite with various morphologies. The reaction ettringite cannot exist stably at 100℃ and will be converted into AFm after a short time.

2.2 pH Value

The stable existence of ettringite in solution depends on the pH of liquid phase, and its stable existence pH range is 10.5 ~ 13.0. Studies have shown that the morphology and size of ettringites synthesized under different pH values are significantly different, but different scholars have different views, because they have different conditions for synthesizing ettringites. A large number of studies have shown that the increase of alkalinity or pH value has a certain inhibitory effect on the formation of ettringite. When the alkalinity of pore solution increases, the concentration of ions required for the stability of ettringite also increases correspondingly. Brown et al. studied the reaction of C3A and gypsum in KOH solution with a concentration of (0.5-2.0)mol/L, and found that the presence of KOH inhibited the formation of ettringite, and the inhibition was most obvious when the concentration of KOH was between (0.5-1.0)mol/L, and even the formation of C-S-H gel adsorbed with Al and SO42- was observed. The study of Zhang Wensheng et al. showed that with the increase of pH value in liquid phase, the length-diameter ratio of ettringite gradually decreased, and the morphology of ettringite changed from long rod to fine needle.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board