Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The life sciences are starting a third revolution. Remember these three key words

来源: | 作者:佚名 | 发布时间 :2023-12-19 | 683 次浏览: | Share:

Ouyang Qi also pointed out that synthetic biology has two main tasks, from the basic research level, to understand as much as possible what the quantitative laws of synthetic life are; From the application level, according to the existing knowledge, it is not possible to solve the problem of prediction, that is, what can be designed, "there are still many basic problems to be solved."

Li Dong agreed with Ouyang Qi's view. Designing life from the ground up, he says, is certainly the goal of human endeavor, but it is true that we are far from that goal.

Current synthetic biology, he explained, introduces the concepts of molecular biology, genomics, and engineering to make living things programmable, as well as to have large reserves of knowledge and data as drivers. However, due to our current limited understanding of life, even a single cell or a organism such as a bacterium, without a thorough understanding of its operating logic, it is impossible to design a complete life from scratch.

"Right now, if we're going to design a whole new cell, I don't think it's possible. Even now, it's very, very difficult to design just one chromosome, put it into an existing cell, and get it through mitosis." Li Dong said.

Li Dong said that in order to truly design life from scratch, there is still a lot of basic research work to be done, such as the development of new observational methods or analytical techniques that can allow us to reveal the entire life process in a panoramic manner, "which should be said that the road to synthetic biology must be crossed."

"The life sciences may not just be a field of their own, but may integrate tools like artificial intelligence, engineering, and other physics to really deconstruct life." After deconstruction, I felt that it was possible to do real synthesis and building knowledge." Li Dong said.

Although all three scholars agree that synthetic biology is still solving some basic problems and is far from truly designing life, they also talk about the need to consider the relevant ethical issues in the development of science and technology in order to prevent the destruction of technology on human beings.

"When human beings use new technologies to change human society, human society has evolved to today, and even nature has evolved to today, perhaps with a little reverence." Some things should not be too hasty, otherwise the consequences may not be something we can deal with." Li Dong said that to promote the application of technology, we need to make two preparations, not only to see its advantages, but also to see the disadvantages. For example, "When you don't fully understand the brain, once you make the brain-computer interface really can control something, etc., I think it may be possible to do some experiments at the laboratory stage, but you must be cautious about promoting it." In this way, we can achieve a more balanced development process with the existing human society or the natural world."

Tang Chao introduced that in the field of gene editing, it is strictly prohibited to edit human germ cells is a red line drawn by the scientific community, which is because artificially changing the genes of germ cells, the changed genes will also be inherited to the next generation, and affect the entire human gene pool.

Li also mentioned that many of the current concerns are likely that technological progress is not good enough, the scientific community does not understand the technology thoroughly enough, so more basic research on life itself is needed. However, technological progress is also iterative, and it may be possible to overcome existing concerns by "iterating on safer or more efficient versions."

03 What does the Third Life Science Revolution mean?

Tang Chao, who is familiar with the history of contemporary science and technology, believes that mankind will usher in the third life science revolution. The first life science revolution began in the 1950s. This revolution brought a large number of physical and chemical tools and ideas to the life sciences in methods such as X-rays, nuclear magnetic resonance, electron microscopy, etc. Its signature achievement was the discovery of the double helix structure of DNA using X-rays. The second life science revolution began in the 1990s with genomics, the intersection of mathematics and computer science with the life sciences. The third life science revolution is beginning, based on technological progress and comprehensive interdisciplinary integration, "This life science revolution will not only bring opportunities and challenges to the development of life science itself, but also to the development of other quantitative disciplines."

For the third life science revolution, Tang Chao gave three key words: "technological progress", "interdisciplinary integration", "quantification of life science".

He explained that technological progress refers to the rapid development of new technologies, such as imaging technology, gene editing technology, stem cell technology, brain-computer interface technology and so on.

  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module