Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

S7-300 CPU 31xC 和 CPU 31x

来源: | 作者:佚名 | 发布时间 :2023-11-20 | 373 次浏览: | Share:

Routing and data record routing

Routing is the transmission of data across network boundaries. Information can be sent from sender to receiver across several networks.

The data logging route is an extension of the common route. For example, when the programming device is not directly connected to the target device

PROFIBUS DP subnets, but when connected to the CPU's PROFINET interface, SIMATIC PDM will make

Record routes with data. The data sent through the data recording route includes parameters of the participating field devices (slave stations)

Configuration, and device-specific information (e.g., set values, limit values, etc.). Data records the destination address structure of the route

Depends on the content of the data, i.e. the secondary station receiving the data.

When a programming device is assigned a different subnet from the target slave station, the data record route can also be read using the programming device

Set of parameters that already exist on the field device, edit them, and return them to the field device.

The field devices themselves do not need to support data record routing because they do not forward the received information.

Clock synchronization

1:intro

The CPU interface supports clock synchronization. The CPU can be programmed to act as a time master (with a default synchronization interval)

Interval) or time to run from the station.

Default value: No clock synchronization

Set synchronization mode

In the properties dialog box of HW Config, set the synchronization mode as follows:

In AS (on the central I/O bus) : Tab → Diagnostics/Clock (Tab → Diagnostics/Clock)

(Also applicable to MPI on CPU without DP interface)

● For MPI/DP or DP interface: Tab → Clock

● For PROFINET interface: Tab → Clock synchronization


2: interface

The following interfaces support clock synchronization:

● MPI interface

The CPU can be configured as either a time master or a time slave.

● DP interface

The CPU can be configured as either a time master or a time slave.

● PROFINET interface

The clock is synchronized with the CPU on the client through NTP.

● On the automation system in the central rack

The CPU can be configured as either a time master or a time slave.

Instructions

On many of these interfaces, the CPU cannot be used as a time slave.

CPU as time slave station

When acting as a time slave, a CPU receives synchronization frames only from a time master and uses that time as an internal time for that CPU

Between.

The CPU serves as the time master

When acting as a time master, the CPU broadcasts clock-sync frames at set synchronization intervals to synchronize them in the subnet to which they are connected

It stands.

Requirement: The CPU clock is no longer in the default state. The clock must be set at least once.

Clock synchronization as a time master begins with:

● After this time is initialized by SFC 0 "SET_CLK" or programming device function

● Use another time master, provided that the CPU is also programmed as an MPI/DP or PROFINET interface

Time operates from the station.

Instructions

The real-time clock of the CPU is not set in the following cases:

 before delivery

 after the mode selector switch is reset to factory Settings

 After firmware update

3. Point-to-point connection

Stats:

Point-to-point connections allow data to be exchanged over serial interfaces. Point-to-point connections can be used to interconnect programmable controllers, computations

Computer or third party system with communication function. It can also be adjusted according to the procedures of the communication partner.

3.1 Data Consistency

Stats:

A data area is consistent if it can be read or written to in the operating system as a block. Station to station

The data exchanged centrally between them should belong to a whole and originate from a processing cycle, that is, the data is consistent. If user

Programs that include programmed communication capabilities (for example, using XSEND/XRCV to access shared data) can pass

The "BUSY" parameter itself coordinates access to the corresponding data area.

Use the PUT/GET function

For some S7 communication functions that do not require blocks in CPU (server mode) user programs (e.g.,

In terms of PUT/GET or write/read access via OP communication, the scope of data consistency must be considered during programming.

The PUT/GET function of the S7 communication or the read/write variable operation through the OP communication are executed at the cycle control point of the CPU

Fine. To guarantee the defined hardware interrupt response time, the communication variables need to be in the form of blocks of up to 240 bytes, to/from

The copied user memory in the operating system loop control point is continuously copied. There is no guarantee for larger data areas

Data consistency.

Using PUT/GET functions and "Prioritized OCM communication"

If the operation is configured as "OCM communication by priority", the specified data consistency is lost (see the chapter "OP Communication (page 80)"). Therefore, data consistency must be ensured through user programs.

Keep the following consistent:

● Byte, word, double-word access (e.g. LMDx)

● SFC 14 "DPRD_DAT"

● SFC 15 "DPWR_DAT"

SFC 81 "UBLKMOV" (for copying up to 512 bytes of data)

It should also be understood that if OCM Communication by Priority is configured, the communication will not be changed at the loop control point

Quantities are continuously copied to/from working memory in blocks of up to 240 bytes. Therefore, it should be done while the user program is running

Copy the data.

                                                                                    Quantity name

                                                                                    ① Analog input and analog output

                                                                                    ② Digital input

                                                                                    ③ digital output

3.2 SNMP Communication Service

availability

SNMP V1, MIB-II communication services can be used with integrated PROFINET interfaces and using version 2.2 or later

Firmware for the CPU.

Stats

SNMP (Simple Network Management Protocol) is the standard protocol for TCP/IP networks.

3.3 Open communication over Industrial Ethernet

demand

● Since STEP 7 V5.4 + SP4

Feature

Cpus with integrated PROFINET interfaces support over industrial Ethernet starting with firmware V2.3.0 or V2.4.0

Open communication function (referred to as: Open IE communication)

Open IE communication provides the following services:

● Connection-oriented protocols

- TCP compliant with RFC 793, connection type B#16#01, firmware V2.3.0 and later

- TCP compliant with RFC 793, connection type B#16#11, firmware V2.4.0 and later

- ISO-on-TCP compliant with RFC 1006, firmware V2.4.0 and higher

● No connection protocol

- UDP compliant with RFC 768, firmware V2.4.0 and later

Attributes of the communication protocol

The following protocol types are included in data communication:

● Connection-oriented protocols:

These protocols establish a (logical) connection to a communication partner before the data transfer and then after the transfer is complete

The connection needs to be closed. When the security of data transmission is particularly important, connection-oriented protocols are used. Usually pass

Multiple logical connections can be established over a single physical cable.

FB for open communication over "Industrial Ethernet" supports the following connection-oriented protocols:

- TCP compliant with RFC 793 (connection types B#16#01 and B#16#11)

- ISO-on-TCP according to RFC 1006 (connection type B#16#12)

● No connection protocol:

These protocols can work without establishing a connection. This means there is no need to establish and terminate connections to remote partners

Answer. Connectionless protocols do not require confirmation to transmit data to remote partners; Therefore, data transmission is not secure.

FB for open communication over industrial Ethernet supports the following connectionless protocols:

- UDP compliant with RFC 768 (connection type B#16#13)


How to communicate with Open IE?

To allow the exchange of data with other communication partners, STEP 7 provides the following FB and under Communication Blocks in the Standard Library

UDT:

● Connection-oriented protocols: TCP, ISO-on-TCP

- FB 63 "TSEND" for sending data

- FB 64 "TRCV" for receiving data

- FB 65 "TCON" for connection

- FB 66 "TDISCON" for disconnection

- UDT 65 "TCON_PAR", whose data structure allows the connection to be parameterized

● No connection protocol: UDP

- FB 67 "TUSEND" for sending data

- FB 68 "TURCV" for receiving data

- FB 65 "TCON" for establishing local communication access points

- FB 66 "TDISCON" for parsing local communication access points

- UDT 65 "TCON_PAR", whose data structure can be parameterized to local communication access points

- UDT 66 "TCON_ADR" with remote partner addressing parameter data structure

Operator controls and indicators for CPU 313C-2 DP

                                                                                            Quantity name

                                                                                            ① Status and error indicators

                                                                                            ② Slot of SIMATIC MMC card (including eject device)

                                                                                            ③ Integrated input and output terminals

                                                                                            ④ Power connection

                                                                                            ⑤ 2. Interface X2 (DP)

                                                                                            ⑥ 1. Interface X1 (MPI)

                                                                                            ⑦ Mode selector

A block of data for parameterization

A block of data for parameterizing TCP and ISO-on-TCP connections

To use TCP and ISO-on-TCP configuration connections, you need to create a number that contains UDT 65 "TCON_PAR" medians

According to the structure of DB. This data structure contains all the parameters needed to establish the connection. Each connection requires such a number

According to the structure, you can arrange it in the global data store.

The CONNECT parameter of FB 65 "TCON" contains a reference to the address of the corresponding connection description (e.g.,

P#DB100.DBX0.0 Byte 64).

A block of data used to parameterize local communication access points using UDP

To assign parameters to the local communication access point, create one that contains the UDT 65 "TCON_PAR" data structure

DB. This data structure contains the parameters needed to establish a connection between the user program and the communication layer of the operating system

The CONNECT parameter of FB 65 "TCON" contains a reference to the address of the corresponding connection description (e.g.,

P#DB100.DBX0.0 Byte 64).

Instructions

Setting Connection Instructions (UDT 65)

You need to enter the communication interface in the "local_device_id" parameter of UDT65 "TCON_PAR" (for example

B#16#03: Communication via IE interface integrated with CPU 319-3 PN/DP).


Establish communication connection

● Suitable for TCP and ISO-on-TCP

Both communication partners call FB 65 "TCON" to establish a connection. Define which communication partner is used as master during parameterization

Dynamic communication endpoints and which are used as passive communication endpoints. To determine the number of possible connections, see your CPU's technology

The technical specifications.

The CPU automatically monitors and maintains active connections.

If the connection is interrupted, for example due to an open circuit or a telecommunication partner, the active party will attempt to re-establish the connection

Answer. You don't have to call FB 65 "TCON" again.

The active connection is terminated by calling FB 66 "TDISCON" or when the CPU is in STOP mode. Want to re-

To establish a connection, you must call FB 65 "TCON" again.

● Suitable for UDP

Both communication partners call FB 65 "TCON" to set up their local communication access point. This will be in the user program and operation

Connections are established between the communication layers of the system. Connections to remote partners are not established.

The local access point is used to send and receive UDP packets.

Distinguish between PROFINET IO and PROFINET CBA features

                                           PROFINET IO and CBA represent automation equipment for "industrial Ethernet" from two different perspectives.

Component-based automation divides the entire device into different functions. These functions are configured and programmed separately.

The device view provided by PROFINET IO is very similar to the PROFIBUS view. You can continue to configure and configure individual programmable controllers


  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board