Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Overview of China's space life science and biotechnology achievements

来源: | 作者:佚名 | 发布时间 :2023-12-19 | 650 次浏览: | Share:

In 1994, the Dynamic Cell Culture System (DCCS) jointly developed by the Shanghai Institute of Technical Physics of the Institute of Zoology successfully carried out satellite experiments. In the late 1990s, the study of the physiological effects of weightlessness evolved from an early observation of phenomena to an in-depth discussion of mechanisms. In October 2003, the successful launch of China's manned spacecraft Shenzhou V showed that China's manned space program has taken a big step forward. Subsequently, China has carried out "Shenzhou 6", "Shenzhou 7" and "Shenzhou 9" manned spaceflight, from the original astronaut to three astronauts, and China's first female astronaut Liu Yang smoothly flew into space.

"Shenzhou VI" carried out the astronauts themselves as physiological tests. The researchers installed a variety of sensors on the two astronauts to record their metabolism during space flight, feel the feeling of weightlessness, test the tolerance of the human body in the space environment, and collect data such as water and gas supply and household garbage excretion. The data of human movement and force performance in weightless environment are obtained, which provide important basis for the design of space station.

Shenzhou-9 carried out 10 human science experiments, including the impact of space flight on vestibular eye movement, cardiovascular and advanced brain functions; Study on cytological mechanism of protection against physiological effects of weightlessness; Research on prevention technology of spatial bone loss; Hazardous gas collection and analysis; Astronaut mass measurement in orbit; Study on pharmacokinetics of paracetamol in weightless condition; Astronaut sleep wake biological cycle rhythm monitoring. In September 2010, China's space station mission was officially launched, marking the breakthrough of China's manned space program to achieve short-term flight to long-term in-orbit residence.

The Shenzhou spacecraft series carries a series of life science experiment projects, which is a leap in the development of space life science in China. In 2002, the Shenzhou IV spacecraft "space cell electric fusion" conducted the space fusion experiments of tobacco "Innovation No. 1" protoplasts and yellow flower tobacco devacuolar protoplasts and mouse myeloma cells and lymphoB cells respectively, obtained the fusion cells and measured the fusion rate of cells under space microgravity conditions, as well as the ability of tobacco fusion cells to regenerate plants.

In 2006, the "Research on the growth and Development of Higher Plants in Space Confined Ecosystem" of the "Shijian 8" recoverable satellite orbiter obtained real-time image data from various stages of seed germination, seedling growth and flowering. It provides a new basis for understanding important physiological processes such as vegetative growth, flower bud differentiation and reproductive organ formation of higher plants in space environment.

On the Shenzhou VIII spacecraft in 2011, China and Germany carried out 17 scientific experiments in four major fields using a universal biological incubator developed by the German side. The four fields cover scientific research issues such as basic space biology, space biotechnology, basic biology of advanced life support systems, and space radiation biology. Among the 17 scientific experimental projects, 10 are conducted by China, 6 by Germany, and 1 by Sino-German cooperation.

After 90 years, the research mainly focuses on five aspects: 1. Spatial protein crystal growth technology and structural biology; 2, space cell and tissue culture technology (including space biomechanics and engineering); 3, space cell electric fusion technology; 4, space biological macromolecule separation (space electrophoresis) technology; 5. Space biology effect. The research in the first stage mainly explores technical issues, and also develops research methods to test the reliability and practicability of space hardware, laying the foundation for future scientific and technological innovation research.

3. Main research achievements of China's space life science and biotechnology

3.1 Crystal growth of proteins and other biological macromolecules

A living body is a precise and efficient machine assembled by proteins, nucleic acids and other biological macromolecules, and even an organelle or a group of proteins is a delicate molecule/nanomachine, which work together to complete a variety of physiological functions. After the study of human genome, structural genome/proteome has become the focus of life science research. Many proteins are difficult to study deeply because of the lack of high-quality single crystals. Growing high-quality protein crystals and obtaining the fine structure of protein molecules by X-ray diffraction can reveal the relationship between their biological functions (normal physiological effects, pathogenic mechanisms, pharmacodynamics or side effects) and molecular structure. Therefore, it has a direct effect on molecular drug design and is of great significance to biomimetic biotechnology. The microgravity environment in space can provide a more ideal growth environment for protein crystals than that on the ground: when protein crystal growth is carried out on the ground, due to the slow diffusion of protein molecules, solute poor layer will be formed around the protein crystal in solution, and natural convection of solute will be further generated under the induction of gravity. Convection destabilizes the crystal growth environment, increases the chances of impurities approaching the crystal surface, and destroys the hydrated layer of protein molecules. In addition, the heavier protein crystals will produce sedimentation, collision and accumulation adhesion, etc., which will reduce the quality of the crystals. In the microgravity environment of space, convection and sedimentation will be effectively inhibited, the crystal growth environment will be more stable, the short-range order of the solution will be stronger, the hydration (solvation) degree of protein molecules will be increased, the filtration and purification function of the poor layer will be effectively exerted, crystal collision and adhesion will rarely occur, and the wall effect will be effectively inhibited. Thus, larger and higher quality protein crystals can be grown, thus laying the foundation for obtaining finer molecular structures and thus more precise structure-function relationships (structure-activity relationships of drugs). After 30 years of research, space protein crystallization has developed into one of the most important space biotechnology, and is an important research content on the International Space Station ISS. Using the ISS, the United States space shuttle, the former Soviet Union's "Mir" space station and spacecraft, China's Shenzhou spacecraft and scientific experiment satellites and other spacecraft, researchers from the United States, Japan, the European Union, Russia, Canada and other countries have carried out hundreds of space experiment studies, and obtained the crystal structure of nearly 30 proteins, nucleic acids, viruses and so on. China's research in this field is almost synchronized with that of foreign countries, led by the Institute of Biophysics of the Chinese Academy of Sciences, and innovative research results have been achieved in molecular assembly mechanism and experimental methods and technologies.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card