Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

How to achieve green and low-carbon development of sewage treatment?

来源: | 作者:佚名 | 发布时间 :2023-12-20 | 1019 次浏览: | Share:

3. Upgrade the aeration system

Secondly, taking various measures to achieve energy throttling according to local conditions is also an important part of green and low-carbon development.

Data show that the power consumption per unit volume of sewage treatment plant in China is about 0.15 ~ 0.28kW·h/m3.

Among them, the proportion of power consumption of aeration blower is 56.2%. Although the energy consumption of different treatment processes is different, it is a fact that the overall energy consumption of the aeration system is the largest. Therefore, the key point of energy saving and consumption reduction in sewage treatment plants is to upgrade the aeration system.

The core of the energy saving of aeration system is to provide dissolved oxygen required by microorganisms on demand under the premise of ensuring that the effluent reaches the standard, so as to achieve the balance between supply and demand and avoid the waste of aeration energy consumption.

This requires accurate control of the microbial activity process, while accurately controlling the operation process of the blower. It is necessary to prevent both over-aeration and under-aeration. This puts forward high requirements for the stability, reliability and accuracy of hardware equipment and control systems.

According to a domestic enterprise that has been engaged in the research of energy saving and consumption reduction technology for aeration systems for many years, in order to achieve accurate control of aeration systems, there are not only technical requirements, but also requirements for the selection and brand of equipment, and even strict requirements for the installation location of metering equipment such as flow meters and liquid level meters.

In general, upgrading the aeration system requires comprehensive consideration of various elements from a system perspective, which is a complex systematic project.

Some domestic cases show that through the energy-saving transformation of the blower, the average daily power consumption is reduced from 32,990 to 29,835, a decrease of 3155, a decrease of 11.4%. Roughly, it can reduce carbon dioxide emissions by 1,148 tons per year.

For small and medium-sized sewage treatment plants, at least hundreds of thousands or even millions of electricity costs can be saved every year. At the same time, the unit total nitrogen was reduced by 10.8%, and the unit ammonia nitrogen was reduced by 13.1%.

4. Optimize the input of raw materials

There are various wastewater treatment processes, but the essence is to remove pollutants from the water through biochemical reactions.

Therefore, carbon sources and a variety of chemical agents need to be added in the treatment process. These raw materials consume energy during production and transportation, and also consume a certain amount of energy during the dosing process.

Therefore, optimizing the feeding link helps to save energy and reduce carbon emissions.

How to optimize the input of raw materials? At present, there are two main ways in the market.

The first is to configure and upgrade the dosing system, from the commonly used frequency conversion metering pump to the digital pump, and the amount of dosing is reduced to varying degrees.

The second is to use AI technology for big data analysis of sewage water quantity, water quality and other parameters and dosing system operation data to form an optimal algorithm model, so as to achieve fine control of the dosing system and effectively reduce drug consumption and equipment operation energy consumption.

5. Optimize the performance of the drainage network

In the urban sewage treatment system, the collection and transportation of sewage involves large-scale pipe network laying and long-distance transportation, which requires a lot of energy consumption to support daily operation and maintenance. In order to minimize this energy consumption, various measures must be taken to optimize the performance of the pipe network.

Among them, the most basic is to transform and upgrade the operation and management mode of the pipe network, and the key work includes the investigation, positioning, maintenance and prevention of potential leakage risks.

Realize real-time monitoring of the operation status of the drainage network, and can quickly analyze whether leakage, blockage, and the severity, specific location, etc., to provide accurate support for managers to quickly maintain.

To improve the water transmission performance of the drainage network, the most fundamental solution is to improve the coverage rate of the drainage network, achieve 100% sewage collection, and carry out the rain and pollution diversion transformation to significantly increase the carbon nitrogen ratio of the sewage treatment plant.

In this way, it can solve the problem of insufficient carbon sources, effectively improve the organic matter - methane conversion rate of the sewage treatment plant, turn the sewage treatment plant into a power plant, fundamentally solve the problem of energy consumption, and achieve carbon neutrality.

6. Energy saving and consumption reduction of drainage pumping station

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card