Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The ship cycle starts, and the structural upgrade is good for the domestic head ship enterprises

来源: | 作者:佚名 | 发布时间 :2023-12-25 | 623 次浏览: | Share:

First, the renewal of old ships combined with environmental protection needs has spawned a new round of ship cycles

1.1 The aging of ships drives a new round of demand for capacity renewal

The age of the ship continues to rise, bringing the replacement demand of the old ship. Since the last round of ship delivery peak, the average ship age of global ships has gradually risen since 2011. According to Clarksons data, as of August 2023, the average ship age of container is the highest, 14.23 years, followed by Tanker. The average age of a ship is 12.46 years, and the average age of a Bulkcarrier is 11.75 years, which is the lowest among the three ship types. From the perspective of fleet age structure, the proportion of global fleet aged 0-5 years has gradually decreased since 2013. Since the beginning of 2018, the proportion of ships over 16 years old has gradually increased. As of March 23, the shipping capacity of 16-20 years old accounted for 15.16%, and the shipping capacity of more than 20 years old accounted for 12.33%. It is expected that the number of ships to be dismantled will increase in the future, and the demand for new shipping capacity will gradually increase.

According to the statistics of the service life of shipbreaking in the past 3 years, the average service life of ships is about 32 years. According to SSI, the average service life of a ship can reach 30-50 years, but without continuous and adequate maintenance, repair and modification, the ship's life is difficult to reach this level. In addition, excessive age of the ship will also bring a series of navigation safety hazards and the increase of insurance costs. Therefore, the actual service life of the average ship is 25-30 years. According to the service life of ships dismantled in recent years, the average service life of ships is about 32 years. In addition, the service life of the same ship type will fluctuate dynamically under different historical freight levels. When the freight rate is at a historical high, the ship owners tend to delay the decommissioning of the ship. Looking at the service life of ships dismantled in the last three years, the average life of LNG is as high as 37 years, while the average life of Capesize Bulker is lower, at 24 years.

In history, the ship cycle generally has a large time span, with an upward period of about 23-28 years and a downward period of about 10 years. Since the 20th century, the world ship market has experienced four distinct cycles: During World War I and World War II, the war's demand for ship renewal iteration was the direct cause of the first two cycles of shipbuilding; After World War II, the global economy recovered, while the ships built during World War II gradually aged, and 1967 coincided with the closure of the Suez Canal. Multiple factors promoted the global shipbuilding industry in 1970-1975 ushered in the third upward cycle, but under the influence of the first oil crisis turned from prosperity to recession. At the end of the 20th century, the rise of the four Asian Tigers, China's accelerated opening up process, and the updated and iterative demand for ships built in the 1970s led the global ship market to enter a new round of prosperity cycle, but this extremely prosperous period came to an abrupt end under the impact of the 2008 financial crisis. Due to the delayed nature of completed deliveries, 2011 was the highest year in history for ship completions, with global completions reaching 167 million deadweight tons (dwt), which represents the load capacity that ships can use in operation, and since then completions have declined significantly. Based on the statistics of the ship cycle and the average dismantling life of ships, we find that the average life of ships is close to the time of an upcycle, and the replacement of ships is likely to be one of the underlying factors driving the shipbuilding cycle.

Although the total volume of global seaborne trade fluctuates annually, it basically expands at a compound growth rate of 3%. World Seaborne Trade reflects the world's major economic and trade transactions, in which the larger volume of trade is mostly for the stable demand of commodities. Take 2022 as an example: oil and gas (crude oil, refined oil, LNG, LPG) trade volume accounted for 30%, dry bulk cargo (mainly iron ore, coal, grain) trade volume accounted for 44%, container trade volume accounted for 15%. Thus, while the volume of global seaborne trade fluctuates in response to the economic cycle, the amplitude is small. Considering that tonne miles can better reflect the demand for shipping capacity, taking the data from 2000 to 2022, it can be found that the total volume of seaborne trade has maintained steady growth in the past 22 years, maintaining a compound growth rate of about 3%.

From the point of view of the annual delivery of new ships, the last round of shipbuilding cycle started in 1989, it has been 34 years, more than 28 years of average ship service life, looking forward to the number of over-age ships facing dismantling will increase rapidly year by year. According to a report by the Baltic Sea International Chamber of Shipping (Bimco), "Over the next ten years from 2023 to 2032, it is expected that more than 15,000 vessels with a deadweight tonnage of more than 600 million tons will be recovered." According to Bimco analyst Niels Rasmussen, this is more than double the amount recycled in the previous decade. At the same time, from the perspective of idle ships, the idle number of bulk carriers and oil tankers delivered in the last round of shipbuilding cycle reached a high point in 2016 and 2015, respectively.

In the past decade, major ship types have gone through 1-2 rounds of large-scale capacity dismantling and large-scale bankruptcy reorganization of shipowners, and the fleet growth rate has been declining for seven consecutive years, and has begun to stabilize in 2019. After the global economic slowdown in 2018 and the Sino-US trade friction caused its growth rate to decline, the global shipping total demand has experienced the impact of the global epidemic, and the growth rate has fluctuated greatly in the past five years, but the overall growth rate still maintained a compound growth rate of about 2%. Clarksons predicts that the growth rate of global seaborne trade will pick up in 23 and 24 years and exceed the growth rate of supply. In addition, the Clarksea Index has experienced a stage of rapid growth since 2021, rising to $43,604 / day in May, 22, the best level of revenue since 2009. Affected by the adjustment of the container ship and dry bulk carrier market, although the index has fallen from the second half of 22 years, it has clearly come out of the bottom area, or indicates that the shipping market has come out of the quagmire of excess capacity.

A new round of shipbuilding cycle is starting. With the growth rate of fleet capacity falling below the growth rate of global seaborne trade volume, the excess capacity of the shipbuilding industry in the last cycle has basically disappeared, and the overall supply and demand tend to balance. At the same time, the last round of ship boom upward period from 1987 to 2007, the upward starting point has been more than 35 years ago, the aging problem of ships will increase year by year, if the growth rate of new shipbuilding can not keep up with the replacement demand, the pressure on the supply side will gradually appear. Since the peak of the shipbuilding boom in 2010-11, the growth rate of new ship deliveries has declined significantly, and the overall growth rate of global fleet capacity has slowed down - from nearly 10% in 2010, and remained at a low rate of 3% in 2014-22. Looking forward to the future, Clarksons data shows that the proportion of order capacity in hand in 2022 and 23 will continue to expand, reaching 10.75% in 23, so it is expected that the global fleet capacity will not increase with the increase in demand in this cycle. However, zombie capacity, labor conflict in the shipbuilding industry, docking investment and construction costs, new energy ship construction difficulties and other factors may have an impact on fleet capacity growth.

1.2 Environmental requirements for ships further strengthen the demand for new shipbuilding

The green transformation of shipping is the trend of The Times, and the new IMO international shipping regulations have officially come into effect in 23 years, and the shipping industry will meet stricter indicators. According to the report released by the International Energy Agency, the global CO2 emissions in 2021 are about 36.3 billion tons, of which the CO2 emissions of the shipping industry are about 833 million tons, accounting for about 2.3% of the total global emissions, if no active control measures are taken, this figure will soar to 18% in 2050. In order to accelerate the curb of shipping and shipbuilding industry carbon emissions, slow down global warming, the International Maritime Organization (IMO) has specially developed a series of carbon reduction related strategic guidance and indicators: The Ship Energy Efficiency Design Index (EEDI) is calculated for new ships delivered after 2013, the Existing Ship Energy Efficiency Index (EEXI) is controlled for ships delivered before 2013, and the Carbon Emission Intensity Index (CII) is assessed against the ship. EEXI and CII came into force in 23 years.

International shipping greenhouse gas emission reduction policies have been further tightened, and a number of important time nodes have been advanced. The 80th session of the IMO Maritime Environment Protection Committee (MEPC 80) has adopted the latest Greenhouse gas (GHG) reduction strategy for ships, which strengthens the GHG emission targets for shipping and brings forward several key milestones.

At the regional level, regional organizations or countries such as the European Union have also formulated policies to promote carbon reduction in their shipping industry. On 14 July 2021, the EU formally unveiled a package of proposals (" Fit for 55 ") aimed at achieving the EU's 2030 target of a 55% reduction in net carbon emissions from 1990 levels. Three of the proposals, including the inclusion of the shipping industry in the EU Carbon cap-and-trade System (EU ETS), the development of the EU Maritime Fuels Regulation and the revision of the Energy Taxation Directive, Will have a significant impact on the shipping industry and its decarbonisation process. With the entry into force of the law, shipping emissions will be included in the EU ETS for the first time, and most large ships will join the EU Emissions Trading System (ETS) from 1 January 2024. As the ETS is phased in, covering 40% of total emissions in 2024, 70% in 2025 and 100% in 2026, combined with the EUA forward curve, The shipping industry is expected to incur costs of up to €3.1 billion in 2024, €5.7 billion in 2025 and €8.4 billion in 2026, respectively.

Limited by the use of ship scenarios, slow sailing and green power are the main solutions for the shipbuilding industry to reduce carbon emissions. "For older ships, it is no longer necessary to carry out large-scale transformation, and carbon can be directly reduced by operational means such as speed reduction in the short term; For ships with modification value, installation of sail power, bubble drag reduction and other devices can reduce resistance, increase power, and achieve energy saving; For newly built ships, we can start to consider green power from the design level." China Shipbuilding Industry Association statistical information work department deputy director Cao Bo said. Slow sailing can effectively reduce the carbon emissions of a single ship, but at the same time reduce the level of capacity. According to a new study published jointly by environmental group Seas At Risk and the European Federation Transport & Environment, a 20% reduction in speed could result in a 24% reduction in sulphur and nitrogen oxide emissions and a significant reduction in black carbon emissions. In the existing studies, it is generally proved that the relationship between fuel consumption and speed is nonlinear, and the daily fuel consumption of a ship is approximately proportional to the cubic speed, while the carbon emissions are directly proportional to the consumption of ship fuel, so the carbon emissions are directly proportional to the cubic speed. However, if we only rely on speed reduction to meet the emission reduction target, on the one hand, the decline in transportation efficiency will put the enterprise at a disadvantage in competition. On the other hand, under the premise of meeting the weekly service frequency, the lower the sailing speed, the longer the cycle time will increase, and additional ships will be needed to deploy to the route. In 2008, the total carbon emission of the global fleet was about 1 billion tons. The IMO carbon reduction plan will be implemented from 2023, assuming that carbon emission is proportional to the third power of the speed of the ship. If carbon emissions of the global shipping industry are reduced by 50% compared with 2008 by 2050, The number of ships, types, traffic volume, sailing mileage, carbon emission technology, etc. do not change every year, and only rely on reducing speed to reduce carbon emissions, then by 2050 the speed needs to be reduced by 16% compared with 2023, in the market for the rigid demand for transport capacity conditions, 2023-50 capacity demand is expected to increase by 16%.

As ship slowdown is likely to lose economic benefits, and CII requirements will become more stringent, in the medium and long term, dismantling and replacing with new energy vessels may be the main path to meet IMO decarbonization regulations. From the economic perspective, the ship's arrival time will be delayed, the delivery time of the goods will be extended, and the related inventory costs, opportunity costs and market costs will be transferred to the shipper. On the other hand, the shipper may choose other shipping companies. Therefore, the ship's speed reduction may reduce the market competitiveness of the shipping company, and there is the risk of losing the supply of goods. Therefore, we believe that slowing down may lead to a loss of economic benefits. In addition, IMO's CII differs from EEXI/EEDI's phasing requirements, and their ratings can be downgraded and tightened over time. According to the current IMO CII emission reduction factor Guide, based on the carbon emission intensity of industry ships in 2019, the reduction factor of ship CII is required to be 5% in 2023 (5% lower than the 2019 level), and then the reduction factor will be increased every year to 11% in 2026. In the future, with the advancement of technology, the requirements may be more stringent, and it may be difficult to meet the long-term assessment at CII by reducing speed alone. As of July 2023, the proportion of new energy ship types in new ship orders has increased to 49.20%. According to Clarksons, the share of new energy vessels in global new ship orders, measured in GT (Gross tonnage), continued to increase from 14.2% in 2018 to 49.20% in July 2023. In the process of the shipping industry's transition from fossil energy to carbon neutral energy, the industry mainly focuses on low-carbon fuels: liquefied natural gas (LNG), liquefied petroleum gas (LPG), alcohol fuels (methanol, ethanol, etc.); Decarbonized fuel: Clean energy represented by ammonia, hydrogen, etc., to carry out Marine research and practice to different degrees. At present, LNG has become a major transition fuel with its technological maturity, availability, low cost and other advantages, and in terms of number, LNG vessels account for more than 60% of new energy vessels.

Ammonia fuel has obvious advantages over hydrogen fuel in energy density and storage, and is considered to be the most potential fuel for the shipping industry to move toward the "ultimate ideal" to achieve the goal of decarbonization.


  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board
  • ABB MC91 HESG440588R4 HESG112714/B Wireless Router Modules
  • ABB PPD113-B03-23-111615 Excitation system controller
  • ABB AB91-1 HESG437479R1 HESG437899 Graphics Expansion Module
  • ABB IT94-3 HESG440310R2 HESG112699/B controller
  • ABB NF93A-2 HESG440280R2 HESG323662R1/HESG216665/K Module Controller
  • ABB IW93-2 HESG440356R1 HESG216678/B I/O module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB RB520 Dummy Module For Submodule Slot
  • ABB SR511 3BSE000863R1 SR511 Regulator 24V/5V
  • ABB DSDP140B 57160001-ACX Counter Board
  • ABB T-1521Z High-Performance Industrial Controller
  • ABB R-2521Z Industrial Control Module
  • ABB COM0002 Industrial Communication Module
  • ABB TAS.580.0550G00 Industrial Controller Module
  • ABB TAS.580.0560G00 Industrial Controller Module
  • ABB SPAJ110C Earth-fault relay
  • ABB TP858 3BSE018138R1 Industrial Control Module
  • ABB SD821 3BSC610037R1 Digital Controller
  • ABB 128877-103 High Precision Industrial Control Module
  • ABB CI853-1 communication interface module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB 5SDF1045H0002 IGBT Silicon Controlled Rectifier
  • ABB TC512V1 3BSE018059R1 Bus Module
  • ABB UCD240A101 Industrial Controller Module
  • ABB TC820-1 Industrial Control Module
  • ABB PM820-2 PLC Pulse Counter Module
  • ABB PM820-1 3BSE010797R1 Processor Module
  • ABB TP830 Industrial Automation Control Module
  • ABB 3ASC25H705/7 control module
  • ABB UAD154A Industrial Automation Module
  • ABB PPD113B01-10-150000 3BHE023784R1023 Controller Module
  • ABB UNS2880B-P V1 Digital I/O Module
  • ABB PFEA112-20 3BSE050091R20 Tension Control amplifier
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Communication
  • ABB PPC380AE02 Industrial Control Module