Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Hydrogen metallurgy process under the background of carbon neutrality may be popular

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 557 次浏览: | Share:

In contrast, the gas-based direct reduction shaft furnace process plays an important role in controlling the input of carbon-containing raw materials from the source and the final output of carbon dioxide. A gas-based direct reduction shaft furnace converts iron ore to direct reduced iron (DRI) by using a mixture of hydrogen and carbon monoxide instead of carbon monoxide as a reducing agent, which is then fed into an electric furnace for further smelting. Obviously, because hydrogen is the main reducing agent, its final product, carbon dioxide emissions will be effectively controlled. Compared with the hydrogen rich reduction blast furnace, the carbon dioxide emission per ton of iron ore smelting using the gas base direct reduction shaft furnace process is reduced by more than 50%. Taking the existing traditional long process iron making technology as an example, carbon dioxide emissions per ton of steel have dropped from the existing nearly 2 tons to less than 1 ton, which undoubtedly brings new possibilities for China to achieve carbon peak and carbon neutrality goals.

In addition to the existing use of hydrogen-carbon monoxide mixture for iron ore smelting, the exploration of pure hydrogen iron making in the industry has also been actively promoted. This process will reduce CO2 emissions by 98% compared to the long process, once again creating new possibilities for cleaner production in the steel industry. Of course, under the existing conditions, due to the strong endothermic effect of hydrogen reduction, the gas volume of the full hydrogen shaft furnace will increase significantly, the reduction rate will also be affected, and the full hydrogen has high requirements for equipment and operation, etc., and the full hydrogen metallurgy technology can not be promoted and applied in a large area in a real sense.

In summary, under the background of carbon peaking and carbon neutrality, the gas-based direct reduction shaft furnace process will be the mainstream hydrogen metallurgy technology means in China in the short term, and the further maturity of the process will also be the main exploration direction of the industry.

Analysis of important factors restricting the development of hydrogen metallurgy process

Gas-based direct reduction shaft furnace process undoubtedly brings a new idea for carbon control and emission reduction in China, but there are many problems in front of us. In addition to the equipment line production of the process, operator training and other factors, the source of hydrogen has a direct impact on the actual promotion and application of this technology.

The existing hydrogen production process is mainly divided into three categories: hydrogen production from fossil energy, industrial by-product hydrogen, and hydrogen production from electrolytic water. Fossil energy hydrogen production mainly includes coal hydrogen production and natural gas hydrogen production, of which the former as a low cost hydrogen production technology in the domestic development is more mature, it is estimated that in the case of raw coal (carbon content of more than 80%) 600 yuan/ton, the production cost is 8.85 yuan /kg, of which the raw material cost accounts for only 15%-20%. Compared with the 70% raw material cost ratio of natural gas hydrogen production, the cost of coal hydrogen production technology is more controllable. However, because the process of coal to hydrogen will extend more carbon footprint, this feature is contrary to low-carbon goals such as energy conservation and emission reduction. In recent years, coke oven gas hydrogen production, light cracking hydrogen production, chlor-alkali by-product hydrogen production as the main industrial by-product technology has been developed. These three hydrogen production processes theoretically produce high purity hydrogen, but the key to restricting its development is whether its raw materials are in sufficient supply. In the existing relatively mature electrolytic cell technology, proton exchange membrane (PEM) and alkaline electrolytic cell (AE) although the technology is not a problem, but due to the high cost of electricity, it has not been widely used. According to market electricity price estimates, the cost of hydrogen production by electrolytic water is about 30-40 yuan /kg.

In the above three hydrogen production processes, the purity of the finished hydrogen obtained by electrolytic water hydrogen production can be as high as 99% in theory, compared with other ways, electrolytic water hydrogen production undoubtedly has an absolute advantage in the key indicator of hydrogen purity. Of course, with the existing power supply situation, it is obviously impossible to popularize electrolytic water hydrogen production in a large area, but considering the development of clean energy power generation in China, the future use of such as biological energy, nuclear energy as a source of electrolytic water hydrogen production power may bring more possibilities for the further development of the process.

Sum up

For a long time, China's hydrogen metallurgy process has not ushered in rapid development due to technical, cost and other factors. However, in the new situation of carbon neutrality, the development of hydrogen metallurgy process has once again gained new momentum. At the same time, with the maturity of the relevant hydrogen production process and the reduction of the cost of hydrogen production brought about by the development of the new energy industry, it will also provide a strong guarantee for the development of hydrogen metallurgy process in China.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module