Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers

来源: | 作者:FAN | 发布时间 :2025-04-22 | 494 次浏览: | Share:

AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers

Installation Process

Pre-preparation: Check the processor package and make sure the accessories are complete, including the processor, battery, and related documents. Prepare the tools and equipment needed for installation, such as I/O chassis, power supply, screwdriver, etc., and record the Ethernet hardware address.

Installation operation: Pay attention to the model and operation specification when installing the battery to prevent electrostatic discharge. Set the I/O chassis back panel switches, configuration plugs and keystrip to select the DH+ station address, serial interface, and ControlNet network address. When plugging the processor into the I/O chassis, be sure to operate it without power to avoid electrical arcing. When connecting remote I/O, DH+, and ControlNet networks, follow cable length and connection specifications and use appropriate terminating resistors.


System planning and use

ControlNet I/O Principle: The ControlNet system enables high-speed, repeatable, and deterministic I/O transfer, supporting the coexistence of control and message information on the same physical medium. Data transfers are scheduled and unscheduled, with scheduled data transfers being continuous and asynchronous for ladder logic program scans, and unscheduled data transfers being used in scenarios where determinism is not required.

Connections and Mapping: introduces the various connection types, such as exclusive owner, input-only, listen-only, and redundant owner connections, as well as the rules for combining them.I/O Mapping involves the creation and maintenance of I/O mapping tables, designating storage locations for the different types of I/O data transfers, as well as reserving space for non-ControlNet I/O.


Optimisation strategy: The use of the I/O image table can be optimised by reasonably arranging the position of the I/O modules, such as placing the less used module types on the left side, and placing the modules that do not need the space of the I/O image table on the right side. There are two methods of optimising complementary without slot and optimising complementary with slot, which are often used in combination in practical applications.


Software Configuration and Programming

Software tools: RSNetWorx for ControlNet software is used to define network parameters and monitor the status of I/O mapping entries; RSLogix 5 software is used to input user programme files, configure modules, etc.; RSLinx software provides the network interface and polls network devices.

Project Operation: When uploading and downloading software projects, ensure that the ControlNet configuration information in the RSLogix 5 project file and the RSNetWorx project file is consistent. Once downloaded, you can use the RSNetWorx software to perform verification activities such as verifying keeper signatures and scanner signatures.

Command usage: ControlNet supports various commands, such as the Message (MSG) command for sending message commands within the network, which can be used for multi-hop communication; the ControlNet I/O Transfer (CIO) command for non-discrete I/O data transfer; and the Immediate Data Input (IDI) and Immediate Data Output (IDO) commands, etc., which have their own scenarios and methods of usage. There are also Immediate Data Input (IDI) and Immediate Data Output (IDO) instructions.


Monitoring and Troubleshooting

Status monitoring: The general operation status of the processor can be understood through the various status indicators on the processor, such as BATT, PROC, FORCE, COMM, etc.; the ControlNet status indicator reflects the operation status of the ControlNet network; and the DH+/RIO status indicators are used to monitor the status of the data highway and the remote I/Os.

Troubleshooting: The common fault codes and their meanings are introduced, for example, 200 indicates that the ControlNet scheduling output data is lost and it is necessary to check whether there is any electrical noise in the network. Corrective action is provided for each fault code.

Technical Specifications and References

Processor specifications: covers the electrical, environmental, mechanical, and communication parameters of the processor, such as backplane current, operating temperature, network update time, etc. It also introduces the available ink cartridges, batteries, memory modules, and so on.

Status File and Instruction Set: The contents stored in each word of the processor status file are described in detail, including arithmetic flags, processor status and flags, and fault codes. The instruction set of ControlNet is introduced, including I/O transfer instructions, message instructions, immediate data I/O instructions, etc., as well as the execution time and memory requirements of the instructions.


Performance Advantages

Efficient and Reliable Communication Performance

High-speed deterministic transmission: ControlNet network is designed for high-speed, repeatable and deterministic I/O transmission, ensuring stable coexistence of control and message information on the same physical medium. In industrial production scenarios, for time-sensitive control commands and real-time data acquisition, it can ensure the timeliness and accuracy of data transmission and avoid production failures caused by delayed or unstable data transmission. In automotive production lines, a large amount of sensor data and equipment control commands are transmitted through the ControlNet network, and its deterministic transmission characteristics ensure the accurate operation of the production line.


Multiple communication methods: A variety of communication methods are supported, including Scheduled Data-Transfer Operations (continuous and asynchronous in ladder logic programme scanning) and Unscheduled Data-Transfer Operations (for scenarios with non-deterministic requirements). This flexible communication mechanism allows the controller to choose the most appropriate communication method for different application requirements, which not only meets the needs of real-time control, but also handles non-deterministic messaging such as programming devices and human-machine interface (HMI) devices, and improves the overall communication efficiency of the system.


Powerful data processing capabilities

Efficient data transfer mechanism: Both discrete I/O data transfer and non-discrete I/O data transfer can be performed in an efficient manner. Discrete I/O data transfers can be configured in the I/O map table for deterministic and repeatable operations; non-discrete I/O data transfers can be configured in the I/O map table or updated using the ControlNet I/O Transfer (CIO) instruction, and have the same priority as discrete I/O data transfers, which effectively improves the speed and efficiency of data processing. This effectively improves the speed and efficiency of data processing. The controller's non-discrete I/O data transfer capability meets the high demand for real-time processing of large amounts of analogue data in chemical production processes.


Supports multi-processor control: multiple ControlNet PLC-5 processors can update the I/O adapters at the same time, and any processor can control the adapters on the network, send CIO commands, and carry out peer-to-peer communication, which realises distributed control and cooperative work of the system, enhances the overall data processing capability and control flexibility of the system, and is suitable for multi-node control of large-scale complex industrial systems. It is suitable for multi-node control of large and complex industrial systems.


Flexible Configuration

Flexible I/O mapping: I/O mapping is highly flexible, users can map I/O data into I/O image table or DIF/DOF file according to the actual demand, and the mapping position and size of input and output data can be adjusted according to the specific situation. This flexibility enables the controller to adapt to different I/O device layouts and data processing requirements, improving the adaptability and scalability of the system configuration. In industrial automation projects of different sizes, the I/O mapping can be flexibly adjusted according to the number and type of I/O devices to meet the specific needs of the project.


Optimized I/O Configuration: A variety of methods are provided to optimize I/O configuration, such as optimizing the use of I/O image table, which can make full use of I/O resources and reduce the waste of resources by adjusting the location of modules and choosing appropriate addressing modes. In practical applications, according to the I/O demand and resources of the system, you can choose to optimise the slotless complementary or optimise the slotted complementary method to improve the efficiency of I/O resources.


Easy Diagnosis and Maintenance

Comprehensive Fault Diagnosis: Equipped with a perfect fault diagnosis mechanism, it can quickly and accurately determine the system's operation status and fault types through the various status indicators (such as BATT, PROC, FORCE, COMM, etc.) on the processor, as well as the ControlNet status indicator and the DH+/RIO status indicator. Combined with detailed fault codes (such as those stored in S:12 in the processor status file), it can provide in-depth understanding of the cause of the fault, and provide strong support for troubleshooting and repair. When a system failure occurs, technicians can quickly locate the point of failure and shorten troubleshooting time based on the indicator status and fault codes.


Convenient monitoring and maintenance: The configuration and status of the ControlNet network can be comprehensively monitored with software tools such as RSNetWorx for ControlNet, RSLogix5, and RSLinx, which can be used to define network parameters and monitor the status of I/O map entries; RSLogix5 can be used to monitor ControlNet diagnostic files and manage user programme files; RSLinx can be used to poll network devices and monitor station diagnostic information. The coordinated use of these software tools facilitates the daily maintenance and management of the system, and improves the reliability and stability of the system.

Ethernet And Serial 1756-A4/B Allen Bradley PLC System at ₹ 135000 ...

  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • RELIANCE 0-57170 Industrial Drive System Component
  • Reliance Electric S-D4030-A Remote I/O Head Module
  • RELIANCE 0-57406-E Industrial Control Module
  • RELIANCE 57401-2 Control Interface Module
  • RELIANCE 57421 Electrical Control Component
  • Reliance Electric 57401 Remote I/O Head Module
  • RELIANCE S-D4007 Industrial Control Module
  • ABB SACO16D1-AA Digital Annunciator Unit
  • RELIANCE 803.65.00 Control Board for Industrial Systems
  • Reliance Electric 57C404C AutoMax Processor Module
  • RELIANCE 0-57C411-2 Industrial Control Module
  • RELIANCE 0-57C408-B Heavy-Duty Industrial AC Motor
  • Reliance Electric 0-57C406-E AutoMax Power Supply Module
  • RELIANCE 0-57C407-4H Industrial Control Module
  • RELIANCE 0-57C405-C Industrial Duty AC Electric Motor
  • Reliance Electric 0-57C404-1E AutoMax Processor Module
  • RELIANCE 0-57C402-C Drive Control Module
  • RELIANCE 0-57C400-A High-Performance Industrial AC Motor
  • Reliance Electric 0-51378-25 Digital Interface Board
  • RELIANCE S-D4041B Drive Control Module
  • RELIANCE INSPECTOR VCIB-06 Vibration Calibration Instrument
  • Reliance Electric S-D4043C Remote I/O Head Module
  • RELIANCE S-D4012 Drive Control Module
  • Reliance Electric 805401-5R Printed Circuit Board
  • RELIANCE ELECTRIC 0-60029-1 Drive Control Module
  • REXROTH VT-HNC100-1-23/W-08-C-0 Digital Axis Control
  • REXROTH VT-HNC100-4-3X/P-I-00/G04 Digital Axis Controller
  • REXRTOH VEP40.3CEN-256NN-MAD-128-NN-FW Industrial Embedded PC
  • Rexroth 0608820116 ErgoSpin CC-AS300-070 Tightening Tool
  • REXROTH MHD093C-058-PG1-AA Synchronous Servo Motor
  • REXRTOH VT-HNC100-1-22/W-08-C-0 Industrial Touch Monitor
  • Rexroth MSK060C-0600-NN-S1-UP1-NNNN IndraDyn S Servo Motor
  • REXRTOH VT3024 Industrial Monitor
  • Rexroth MHD041B-144-PG1-UN Synchronous Servo Motor
  • Rexroth VT-HNC100-1-23/W-08-S-0 Digital Axis Control
  • Rexroth VT-HNC100-1-23/M-08-P-0 Controller
  • REXRTOH VT-HNC100-1-22/W-08-0-0 | Hydraulic Valve Block Assembly
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth MHD095C-058-NG1-RN Hydraulic Motor
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • REXRTOH BTV04.2GN-FW | Bus Terminal Valve with PROFINET
  • Rexroth BGR DKC02.3-LK SCK02/01 ECODRIVE3 Control Assembly
  • Rexroth MKD025B-144-KG1-UN Servo Motor
  • REXRTOH R901325866+R900775346+R901273425A | Drive System Component Set
  • Rexroth CSH01.1C-SE-EN2-NNN-NNN-NN-S-XP-FW Drive Controller
  • REXRTOH DDS2.1W200-D | Digital Servo Drive
  • Rexroth VT3002-2X/48F Card Holder for Proportional Amplifiers
  • Rexroth VDP40.2BIN-G4-PS-NN Proportional Valve
  • REXRTOH MSK070D-0450-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK070C-0150-NN-S1-UG0-NNNN IndraDyn S Servo Motor
  • Rexroth MSK050C-0600-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK030C-0900-NN-M1-UP1-NSNN Servo Motor
  • Rexroth TV 3000HT PUMF Hydraulic Pump Module
  • REXRTOH R911259395 | Drive System Control Module
  • Rexroth VT-VSPA1-1-11 Proportional Amplifier Card
  • Rexroth VT3006S35R1 Proportional Valve Module
  • REXRTOH VT3006S34R5 Hydraulic Valve | Directional Control Valve
  • Rexroth VT3000S34-R5 Proportional Amplifier Card
  • Rexroth SL36 Servo Motor Controller
  • REXRTOH SE200 0608830123 | Inductive Proximity Sensor
  • Rexroth RAC 2.2-200-460-A00-W1 Main Spindle Drive Controller
  • Rexroth PSM01.1-FW Power Supply Module
  • REXRTOH PIC-6115 | Programmable Industrial Controller
  • Rexroth MDD112D-N030-N2M-130GA0 Digital AC Servo Motor
  • Rexroth HDS03.2-W075N Drive Controller Module
  • REXRTOH DKC03.3-040-7-FW Servo Drive | Digital Motion Controller
  • Rexroth DKC02.3-200-7-FW ECODRIVE3 Servo Drive Controller
  • Rexroth CSB01.1N-AN-ENS Control System Module
  • REXRTOH 0608830222 | Genuine Automation Component
  • Rexroth 0608830174 ErgoSpin Tightening System Control Module
  • Rexroth 0608820103 Industrial Hydraulic Control Component
  • REXRTOH 0608820069 Industrial Automation Component
  • Rexroth 0608800048 ErgoSpin Tightening System Control Module
  • Rexroth 0608801006 Industrial Hydraulic Control Component
  • REXRTOH SYHNC100-NIB-24-P-D-E23-A012 Encoder | Synchronous Serial Interface
  • Rexroth 0608720040 ErgoSpin Tightening System Control Module
  • REXRTOH SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • ABB CP555 1SBP260179R1001 HMI Operator Terminal
  • HIMA K9212 Fan Assembly | Safety System Cooling Unit
  • WATLOW CLS208 Digital Temperature Controller
  • Watlow CLS2163C1-110200000-CLS204204-C10000AA-CLS208208-C10000AE Multi-Loop PID Controllers
  • WATLOW PPC-TB50 Power Controller
  • WATLOW PPC-TB50 30280-00 Temperature Controller
  • Watlow NLS300-CIM316 Communication Interface Module
  • WATLOW MLS300 Limit Controller
  • WATLOW CAS 16CLS/CAS Temperature Controller
  • Watlow CAS200 CLS216 16-Loop Thermal Controller Module
  • WATLOW CLS208 C10000CP Power Controller
  • WATLOW ANAFAZE LLS200212 CLS208 Temperature Control System
  • Watlow ANAFZE PPC-TB50 CLS208 Multi-Loop Controller
  • WATLOW ANAFZE 997D-11CC-JURG Power Controller
  • WATLOW ANAFAZE PPC-TB50 Temperature Controller
  • ABB SUE3000 1VCF750090R0804 High-Speed Transfer Device
  • ABB TET106 11355-0-6050000 Temperature Module
  • ABB PPD512 A10-15000 Power Panel Display
  • ABB PPD113B01 3BHE023784R1023 AC 800PEC Control Module
  • ABB PFEA113-65 Tension Controller 3BSE050092R65
  • ABB PFEA112-20 3BSE050091R20 Fieldbus Adapter Module
  • ABB PFEA111-65 3BSE050091R65 Tension Electronics PFEA111
  • ABB PFEA111-65 Tension Controller 3BSE050090R65
  • ABB PDD500A101 Operator Display Panel | Industrial HMI Interface
  • ABB KP2500 Process Control System Controller
  • ABB CP405 A0 Operator Panel 1SAP500405R0001
  • ABB AX411/50001 Digital Input Module
  • ABB 500TRM02 1MRB150011R1 Procontrol P13 Bus Terminal Module
  • ABB 500TTM02 Temperature Module 1MB150021R0116
  • ABB 500TRM02 1MRB150011R0001 Terminating Resistor Module
  • ABB 500SCM01 1MRE450004R1 Control Module
  • ABB 500SCM01 1MRB200059/C 1MRB150044R0001 Station Control Module
  • ABB 500SCM01 1MRB150004R00011MRB200059/C Control Module
  • ABB 500PSM03 1MRB 150038 R1 894-030375D 136-011100H Power System Module
  • ABB 500PSM03 1MRB150038 R1 894-030375D 136-011100H Power Supply Module
  • ABB 500PSM02 1MRB150015R1 AD-272.100.20-01 AZ:C Power Supply Module
  • ABB 500PB101 1MRB178009R00011MRB200064/C Power Supply Module
  • ABB 500MTM02 1MRK001967-AA 1HDF 930512 X010 Module
  • ABB 500MTM02 1MRB150020R1102 1HDF 930512 X010 Motor Module
  • ABB 500MTM02 1MRB150020R0712 Touch Module
  • ABB 500MBA02 1MRB150003R0003 1MRB200053/M Bus Coupling Module
  • ABB 500MBA01 1MRB150003R00021MRB200053/L Motor Control Module
  • ABB 500MBA02 1MRB150003R000/B Analog Output Module