Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers

来源: | 作者:FAN | 发布时间 :2025-04-22 | 416 次浏览: | Share:

AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers

Installation Process

Pre-preparation: Check the processor package and make sure the accessories are complete, including the processor, battery, and related documents. Prepare the tools and equipment needed for installation, such as I/O chassis, power supply, screwdriver, etc., and record the Ethernet hardware address.

Installation operation: Pay attention to the model and operation specification when installing the battery to prevent electrostatic discharge. Set the I/O chassis back panel switches, configuration plugs and keystrip to select the DH+ station address, serial interface, and ControlNet network address. When plugging the processor into the I/O chassis, be sure to operate it without power to avoid electrical arcing. When connecting remote I/O, DH+, and ControlNet networks, follow cable length and connection specifications and use appropriate terminating resistors.


System planning and use

ControlNet I/O Principle: The ControlNet system enables high-speed, repeatable, and deterministic I/O transfer, supporting the coexistence of control and message information on the same physical medium. Data transfers are scheduled and unscheduled, with scheduled data transfers being continuous and asynchronous for ladder logic program scans, and unscheduled data transfers being used in scenarios where determinism is not required.

Connections and Mapping: introduces the various connection types, such as exclusive owner, input-only, listen-only, and redundant owner connections, as well as the rules for combining them.I/O Mapping involves the creation and maintenance of I/O mapping tables, designating storage locations for the different types of I/O data transfers, as well as reserving space for non-ControlNet I/O.


Optimisation strategy: The use of the I/O image table can be optimised by reasonably arranging the position of the I/O modules, such as placing the less used module types on the left side, and placing the modules that do not need the space of the I/O image table on the right side. There are two methods of optimising complementary without slot and optimising complementary with slot, which are often used in combination in practical applications.


Software Configuration and Programming

Software tools: RSNetWorx for ControlNet software is used to define network parameters and monitor the status of I/O mapping entries; RSLogix 5 software is used to input user programme files, configure modules, etc.; RSLinx software provides the network interface and polls network devices.

Project Operation: When uploading and downloading software projects, ensure that the ControlNet configuration information in the RSLogix 5 project file and the RSNetWorx project file is consistent. Once downloaded, you can use the RSNetWorx software to perform verification activities such as verifying keeper signatures and scanner signatures.

Command usage: ControlNet supports various commands, such as the Message (MSG) command for sending message commands within the network, which can be used for multi-hop communication; the ControlNet I/O Transfer (CIO) command for non-discrete I/O data transfer; and the Immediate Data Input (IDI) and Immediate Data Output (IDO) commands, etc., which have their own scenarios and methods of usage. There are also Immediate Data Input (IDI) and Immediate Data Output (IDO) instructions.


Monitoring and Troubleshooting

Status monitoring: The general operation status of the processor can be understood through the various status indicators on the processor, such as BATT, PROC, FORCE, COMM, etc.; the ControlNet status indicator reflects the operation status of the ControlNet network; and the DH+/RIO status indicators are used to monitor the status of the data highway and the remote I/Os.

Troubleshooting: The common fault codes and their meanings are introduced, for example, 200 indicates that the ControlNet scheduling output data is lost and it is necessary to check whether there is any electrical noise in the network. Corrective action is provided for each fault code.

Technical Specifications and References

Processor specifications: covers the electrical, environmental, mechanical, and communication parameters of the processor, such as backplane current, operating temperature, network update time, etc. It also introduces the available ink cartridges, batteries, memory modules, and so on.

Status File and Instruction Set: The contents stored in each word of the processor status file are described in detail, including arithmetic flags, processor status and flags, and fault codes. The instruction set of ControlNet is introduced, including I/O transfer instructions, message instructions, immediate data I/O instructions, etc., as well as the execution time and memory requirements of the instructions.


Performance Advantages

Efficient and Reliable Communication Performance

High-speed deterministic transmission: ControlNet network is designed for high-speed, repeatable and deterministic I/O transmission, ensuring stable coexistence of control and message information on the same physical medium. In industrial production scenarios, for time-sensitive control commands and real-time data acquisition, it can ensure the timeliness and accuracy of data transmission and avoid production failures caused by delayed or unstable data transmission. In automotive production lines, a large amount of sensor data and equipment control commands are transmitted through the ControlNet network, and its deterministic transmission characteristics ensure the accurate operation of the production line.


Multiple communication methods: A variety of communication methods are supported, including Scheduled Data-Transfer Operations (continuous and asynchronous in ladder logic programme scanning) and Unscheduled Data-Transfer Operations (for scenarios with non-deterministic requirements). This flexible communication mechanism allows the controller to choose the most appropriate communication method for different application requirements, which not only meets the needs of real-time control, but also handles non-deterministic messaging such as programming devices and human-machine interface (HMI) devices, and improves the overall communication efficiency of the system.


Powerful data processing capabilities

Efficient data transfer mechanism: Both discrete I/O data transfer and non-discrete I/O data transfer can be performed in an efficient manner. Discrete I/O data transfers can be configured in the I/O map table for deterministic and repeatable operations; non-discrete I/O data transfers can be configured in the I/O map table or updated using the ControlNet I/O Transfer (CIO) instruction, and have the same priority as discrete I/O data transfers, which effectively improves the speed and efficiency of data processing. This effectively improves the speed and efficiency of data processing. The controller's non-discrete I/O data transfer capability meets the high demand for real-time processing of large amounts of analogue data in chemical production processes.


Supports multi-processor control: multiple ControlNet PLC-5 processors can update the I/O adapters at the same time, and any processor can control the adapters on the network, send CIO commands, and carry out peer-to-peer communication, which realises distributed control and cooperative work of the system, enhances the overall data processing capability and control flexibility of the system, and is suitable for multi-node control of large-scale complex industrial systems. It is suitable for multi-node control of large and complex industrial systems.


Flexible Configuration

Flexible I/O mapping: I/O mapping is highly flexible, users can map I/O data into I/O image table or DIF/DOF file according to the actual demand, and the mapping position and size of input and output data can be adjusted according to the specific situation. This flexibility enables the controller to adapt to different I/O device layouts and data processing requirements, improving the adaptability and scalability of the system configuration. In industrial automation projects of different sizes, the I/O mapping can be flexibly adjusted according to the number and type of I/O devices to meet the specific needs of the project.


Optimized I/O Configuration: A variety of methods are provided to optimize I/O configuration, such as optimizing the use of I/O image table, which can make full use of I/O resources and reduce the waste of resources by adjusting the location of modules and choosing appropriate addressing modes. In practical applications, according to the I/O demand and resources of the system, you can choose to optimise the slotless complementary or optimise the slotted complementary method to improve the efficiency of I/O resources.


Easy Diagnosis and Maintenance

Comprehensive Fault Diagnosis: Equipped with a perfect fault diagnosis mechanism, it can quickly and accurately determine the system's operation status and fault types through the various status indicators (such as BATT, PROC, FORCE, COMM, etc.) on the processor, as well as the ControlNet status indicator and the DH+/RIO status indicator. Combined with detailed fault codes (such as those stored in S:12 in the processor status file), it can provide in-depth understanding of the cause of the fault, and provide strong support for troubleshooting and repair. When a system failure occurs, technicians can quickly locate the point of failure and shorten troubleshooting time based on the indicator status and fault codes.


Convenient monitoring and maintenance: The configuration and status of the ControlNet network can be comprehensively monitored with software tools such as RSNetWorx for ControlNet, RSLogix5, and RSLinx, which can be used to define network parameters and monitor the status of I/O map entries; RSLogix5 can be used to monitor ControlNet diagnostic files and manage user programme files; RSLinx can be used to poll network devices and monitor station diagnostic information. The coordinated use of these software tools facilitates the daily maintenance and management of the system, and improves the reliability and stability of the system.

Ethernet And Serial 1756-A4/B Allen Bradley PLC System at ₹ 135000 ...

  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module
  • GE D20EME 0526-21170-1 PLC module
  • GE 2400-21004 2010-3101-0442 Sensor
  • GE DS200DCFBG2BNC MRP569662 Analog Input/Output Board
  • GE DS200DCFBG2BNC MRP569662 DC Feedback Board
  • GE IC695CPE400-ABAB Controller
  • GE DS200DCFBG2BNC MRP433745 Drive Control Board
  • GE DS200DCFBG2BNC MRP420024 DC Feedback Board
  • GE IS200PPPBH2CAA power module
  • GE IS210MACCH2AGG Compact Controller
  • GE IS200AEPAH1AFD Printed Circuit Board
  • GE IS200AEPAH1ACB redundant power module
  • GE IS200WREAS1ADB Relay Output Module
  • GE IS200AEPAH1AHD Printed Circuit Board
  • GE IS200WEMAH1AEA Wind Energy Main Assembly
  • GE IS210MACCH1AGG Turbine Control Module
  • GE IS230TNRLH1B Terminal Base Station Relay Module
  • GE DS200PCCAG1ACB Power Connection Card
  • GE DS200SI0CG1AEA Instant Overcurrent Card
  • GE DS200SHVMG1AGE servo valve interface module
  • GE DS200SI0CG1A6A Input/Output Module
  • GE DS200RT8AG3AHC Programmable Logic Controller
  • GE VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J Rack mounted Input/Output Module
  • GE WEA13-13 2508-21001 Embedded Digital Module
  • GE WES5120 2340-21004 Controller Main Module
  • GE WES5120 2340-21006 on-site control host
  • GE WESDAC D20ME 18-MAR-13 Excitation Control Module
  • GE D20 EME 27-APR-13 Input/Output Module
  • GE D20 EME 2400-21004 Substation Controller
  • GE SR745-W2-P1-G1-HI-A-L-R-E Transformer Protection Relay
  • GE SR745-W2-P1-G1-HI-A-L-R Transformer Management Relay
  • GE IS230TNDSH2A Independent Output Relay Module
  • GE IS200TDBSH2ACC Terminal Module
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-5576 high-speed fiber optic reflective memory
  • GE 760-P1-G1-S1-LO-A20-R-E feeder management relay
  • GE 760-P1-G1-S1-LO-A20-R 760 Series Management Relay
  • GE 760-P5-G5-S5-HI-A20-R-E Motor Management Relay
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed Circuit Board
  • GE IS210BPPCH1AEC Programmable Monitoring System
  • GE WESDAC D20ME II Remote Terminal Unit (RTU) Main Processor Card
  • GE IC693DSM302-AE Discrete Output Module
  • GE IS220PRTDH1A 336A4940CSP6 temperature sensor input module
  • GE IS420ESWBH3AX Ethernet Switch
  • GE EVPBDP0001 EVPBDP032 output module
  • GE V7668A-131000 350-93100076668-131000 B Control Module
  • GE IS200SPROH1AAB MRP663860 Turbine Protection Relay
  • GE VG5SK8I052311 PM0N2000 Digital Input Module
  • GE MVR1600-4601 air-cooled rectifier module
  • GE CT11T7F10PN1 PMC676RCTX V2.3 01 16 C1145 CR11 V2.X Network Interface Card
  • GE IS215UCVHM06A IS200PMCIH1ACC Controller
  • GE IC695CPU315-BB Programmable Logic Controller