Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

4 kinds of paper "secrets" such as paper must use trees?

来源: | 作者:佚名 | 发布时间 :2024-01-15 | 560 次浏览: | Share:

Trees are only one of the raw materials used to make paper. In ancient China, hemp, bark and bamboo were usually used to make handmade paper. In the late 18th century, after the rise of machine-made paper in Europe, trees (wood chips) were used to make paper. Therefore, the raw materials used in the modern paper industry can be divided into two categories: the first category is plant fiber, and the second category is non-plant fiber. The former includes wood, bamboo, reed, grass and so on.

The latter includes glass fiber, carbon fiber, nylon fiber, metal wire and so on. In addition, there are polymer resins (such as polypropylene), inorganic substances (such as limestone powder), etc., are also included in the second category. Plant fiber raw materials are mainly used to produce ordinary paper; Non-plant fiber raw materials are mostly used in the manufacture of specialty paper.

In China, the plant fiber raw materials used in the paper industry: wood accounted for 20%, reed accounted for 13%, bamboo accounted for 15%, rice-wheat grass accounted for 22%, waste paper accounted for 30%. In economically developed countries abroad, their paper industry uses plant fiber raw materials: wood accounts for 90%, and other (including waste paper) is only about 10%.

At present, ordinary paper, which is generally used for writing, printing and packaging, is still made of plant fiber as the main raw material, accounting for about 95% of the total production. For other papers, it's 5%. It can be seen that paper does not have to be made of trees, and there are many raw materials for paper making. Of course, because the fiber of the tree is better, the quality of the paper made from it is generally higher.

Why does the newspaper turn yellow and brittle after long standing?

The basic material of paper is pulp. Most of the general pulp is from plants - such as wood, grass, etc., after a series of treatments to get. The so-called pulp is a "collective household" composed of many single fibers and water. Those thin, silky fibers contain cellulose, lignin, hemicellulose and other chemical components.

In the paper industry, the physical and chemical processing of plant raw materials to obtain fibers is called pulping. The pulping process includes a series of operations such as slicing, screening, cooking, washing, bleaching, etc., whose purpose is to remove lignin, appropriately retain hemicellulose, and maximize the separation and extraction of cellulose. Therefore, the paper produced is generally white, but there is more or less residual lignin in the fibers in the paper (which is invisible to the naked eye). The steel printed newspaper is also white, with (acid) ink on it. Naturally, there are also wooden ropes in it.

Lignin this chemical substance, has a polymer three-dimensional structure, which contains a large active chemical group, the nature is both tenacious and sensitive. Because in the pulping process, although it is treated with strong alkali and strong acid, a part of the lignin is broken down, but it is still "tenacious resistance", so there is still a certain amount of lignin in the fiber.

In other words, the paper is also more or less "hidden" lignin. Once the paper is placed for a long time, exposed to sunlight or chemically reacted with oxygen in the air, the chemical groups in the lignin molecules that are particularly sensitive to ultraviolet light and oxygen molecules will change from colorless to colored group - yellowish brown. Add to that the acidic substances floating in the air and the erosion of the acidic ink. As a result, the newspaper turned yellow and brittle. Why isn't wet paper strong enough to break at a poke?

Paper is mainly made of plant fibers interwoven with each other. Between fibers, they are held together by hydrogen bonds formed by hydroxyl groups of cellulose macromolecules.

In the papermaking process, according to the process flow, the fiber (pulp) dispersed in water is first dehydrated, and then squeezed dry, and finally dried in the dryer. In the meantime, water molecules are used to build a "water bridge". The water bridge is a "bridge" that uses the polarity of the water molecule itself to narrow the hydroxyl group between the cellulose molecules to a very small distance, which causes the electronegativity of the oxygen atom to attract the positivity of the hydrogen atom. The chemical bond between so many hydrogen and oxygen atoms is called a hydrogen bond. The bond energy of hydrogen bonds is smaller than that of common covalent bonds, but the total energy of many, many hydrogen bonds is large. Therefore, due to hydrogen bonding, dry paper shows good strength, that is, strong and not easy to break.

If you soak the paper in water, in other words, let the water molecules push between the fibers in the paper, pushing the cellulose molecules that are already tightly bound, that is, the water molecules break the hydrogen bond, and the result is a huge damage to the fiber network. As a result, the hydrogen bond is broken, and the strength of the paper is also severely destroyed, and the wet paper becomes very weak and breaks at a poke.

Why does wet paper wrinkle when it dries?

In general, the moisture contained in the paper (8%) should be in balance with the relative humidity in the surrounding air (that is, the moisture contained in the air). At this time, if the paper is wet by water, it will inevitably cause local changes. What kind of changes are these?

First, when liquid water is in local contact with the paper surface, there will be a physical change of "coarsening" in this part, that is, the fiber bulge and fiber warping occur. This phenomenon is an irreversible change in the shape of the fibers; Second, water molecules continue to penetrate into the paper, which will cause local deformation of the fiber network organization, resulting in stress release within and between the fibers. This deformation is also irreversible; Third, when the water on the paper evaporates, there is a "displacement" between the original fibers.

Along with the formation of new fiber bonding bonds, the possibility of reconnecting after the original network is destroyed is also lost, which is also an irreversible change. As a result, the paper that has been moistened and then dried by water not only decreases its tensile strength by about 10%, but also has wrinkles that are impossible to erase. This is the result of three irreversible changes.

Is there a way to make wet paper dry without wrinkling? It is impossible not to wrinkle at all. There is only one way to reduce this phenomenon, that is, when the paper is wet with water, immediately use absorbent paper or (good quality, flat surface) toilet paper, respectively, attached to both sides of the wet paper, and then press down with heavy weights. After 24 to 36 hours of time, when the paper dries, it will be found that the "wrinkles" are not so obvious.

Why can a paper pot boil water?

The key to boiling water in a paper pot is what kind of paper you use. In the past, some people used kraft paper folded into a paper box with water, put it on the electric stove to heat, and soon the water boiled. It's a physical phenomenon that can inspire people to think more. Because the paper is relatively thin, the specific surface area is large, the heat transfer rate is fast, and the temperature of the water is low, so even the thin paper can withstand the heating effect. However, strictly speaking, this "paper pot" boiling water is a scientific game and has no practical value.

Now, a paper pot made of thermal paper has been successfully developed. This paper must have the characteristics of high tightness, high break resistance, high physical strength and high fire resistance. Due to the low temperature of the water added, there is a temperature difference with the heat source under the paper pan; In addition, the paper has the strength, the thickness is small, and the heat transfer is good, so once it is heated (it is not appropriate to use an open fire, use an electric furnace), the water in the pot will be constantly heated and reach boiling. Therefore, this thermal paper can not only be waterproof, stress, but also can make tableware (such as hot pot).

The raw material used for thermal paper is coniferous wood pulp, after sticky beating, plus rosin, aluminum sulfate and waterproofing agent, etc., if necessary, it can also be coated with a layer of flame retardant to ensure that the waterproof, heat resistance and other functions of the paper are fully guaranteed. It is precisely because this paper has a good application, so it can become a tableware instead of copper or stainless steel POTS. The use of paper pot compared with other hot pot, its advantages are: one pot, to ensure health; Eliminate cleaning, reduce costs; Use up recycling (when waste paper), why not?


  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card