Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Industrial Networks Connecting Controllers via OPC

来源: | 作者:佚名 | 发布时间 :2024-01-15 | 660 次浏览: | Share:

Reliability means the probability of a device remaining failure free during a specified time interval, e.g. the maintenance interval: R = e λt Redundancy is the implementation of extra components in addition to the ones needed for normal operation. Thus, redundancy normally increases reliability and availability. 

2.2 OPC OPC, originally short for “OLE for Process Control”, is an open, standardized software communication interface specification launched in 1996 by a task force of different automation companies, later forming the OPC Foundation. As the former name indicates, OPC is an adaption of Microsoft’s Object Linking and Embedding OLE1 to the process control business, which used to be highly proprietary at that point of time. Thus it was almost impossible to efficiently combine products of different vendors. By providing so-called OPC servers with their devices, buses and software, vendors open their products to any OPC compliant client able to connect to the server for data exchange. Usually, an OPC server can handle several clients at once, while these clients—e.g. visualization or calculation applications—can connect to different servers in order to obtain their needed information.

Over the years, the OPC Foundation has been adding eight additional speci- fications to the original one, therefore the name OPC was freed from its original meaning and is now used as an umbrella term [3]. Some important specifications are quickly explained in the following: DA (Data Access) is the original and most widely used standard of OPC. Its purpose is the cyclic polling of real time data, for example for visualization purposes.

HDA (Historical Data Access), in contrary, specifies the access to already stored data. 

AE (Alarms and Events) describes the non-cyclic, event-based exchange of alarms and events. 

Data eXchange is a specification from 2002 which regulates the direct communication between two OPC servers. For this Master’s Thesis it was made use both of the DA specification for the main purpose of communication as well as the AE specification in order to display and log round-trip times. Unfortunately, the promising Data eXchange specification is almost inexistent in practice and could therefore not be used in our thesis. The underlying technique to exchange data is the component object model COM of Microsoft Windows, therefore OPC can only run on Windows operating systems [4]. A new generation of OPC specifications recently published is called OPC Unified Architecture (OPC UA) and is independent of COM, thus being able to run on more operating systems as well as embedded devices [5]. 

2.2.1 OPC Data Access OPC DA is organized in the hierarchical structure server, group and item. Items correspond to variables and can be read and written. Furthermore, a quality and time stamp is provided with each of them. When reading items, the value usually comes from the OPC server’s cache, which is updated periodically with the values of the device (or bus, component). However, it is usually possible to force a read directly from the device. Clients organize their items in groups, which for example share the same access method and update rate. Each OPC server has an unique name, some vendors even offer the operation of multiple servers for the same device. OPC DA provides different methods to access items, first of all synchronous and asynchronous read and write operations. More important to us, there is also a subscription mechanism, which is commonly used by modern clients in order to reduce communication. That is, the client group subscribes to the server which then “pushes” values towards the client only if they changed respectively exceed a pre-defined dead-band. The client can force an update of all these values by issuing a refresh call, which corresponds to an asynchronous read for all items of a group [6]. 

2.3 Programmable Logic Controllers This section informs about the two controllers involved and about the controller that has to be replaced. Please notice that we use the term controller equivalent to programmable logic controller (PLC) throughout our Master’s Thesis.

2.3.1 Advant Controller 160 (AC160) The AC160 series was launched in 1997 to meet high speed requirements in turbine control. To this day its outstanding performance is needed for fast closed loop control (CLC). For our work, we were provided with a rack RF616 for the physical mounting of the controller parts. The rack also delivers power to each device and includes the BIOB Backplane Input/Output Bus which, among other tasks, processes the communication between the processor module and the communication interface. The tests in this Master’s Thesis were done with processor modules of the type PM665 (containing a Motorola MPC8240 processor) and the AF100 communication interface CI631, both supporting redundancy [7]. To program the processor module, its built-in EIA-232 interface was connected to the engineering PC.

  • YASKAWA JACP-317802 AC servo drive
  • YASKAWA JACP-317801 Advanced Process Controller
  • YASKAWA JACP-317120 Power Supply Unit
  • YASKAWA CP-9200SH/SVA servo controller
  • YASKAWA CP-9200SH/CPU Programmable Controller
  • YASKAWA CP-317/DO-01 Digital Output Module
  • YASKAWA CP-317/218IF high-speed communication interface module
  • YASKAWA CP-317/217 IF Communication Interface Module
  • YASKAWA CIMR-M5D2018 High Performance Inverter
  • YASKAWA CACR-HR10BB servo drive
  • YASKAWA 218IF machine controller
  • YOKOGAWA YS1700-100/A06/A31 Programmable Indicator Controller
  • YOKOGAWA KS9-5 * A signal cable
  • YOKOGAWA KS8-5 * A signal cable
  • YOKOGAWA KS2-5 * A DSC signal cable
  • YOKOGAWA PW482-10 power module
  • YOKOGAWA SCP451-11 processor module
  • YOKOGAWA SR1030B62-3MN * 1C High Frequency Signal Processor
  • YOKOGAWA SR1030B62 Analog Input Module
  • YOKOGAWA CP451-10 processor module
  • YOKOGAWA CP451-50 processor module
  • YOKOGAWA AAI143-H50 Analog Input Module
  • YOKOGAWA 22.5 × 17.4 × 10 Compact Industrial Control Module
  • YOKOGAWA AMM42 multiplexer input module
  • YOKOGAWA SDV144-S63 Digital Input Module
  • YOKOGAWA AIP830-111 single player keyboard
  • YOKOGAWA S9361DH-00 Terminal Board Module
  • YOKOGAWA ATK4A-00 S1 KS Cable Interface Adapter
  • YOKOGAWA PW701 power module
  • YOKOGAWA AVR10D-A22010 Duplex V-net Router
  • YOKOGAWA PW441-10 power module
  • YOKOGAWA VI451-10 Communication Interface Module
  • YOKOGAWA VC401-10 Coupling Module
  • YOKOGAWA ALP121 Communication Module
  • YOKOGAWA NFAI841-S00 Analog Input Module
  • YOKOGAWA AIP591 Process Control Module
  • YOKOGAWA AIP578 optical link transceiver
  • YOKOGAWA PW501 power module
  • YOKOGAWA YNT511D fiber optic bus repeater
  • YOKOGAWA AIP171 transceiver control module
  • YOKOGAWA VI702 Vnet/IP Interface Card
  • YOKOGAWA 2302-32-VLE-2 electronic mixer
  • YOKOGAWA ATK4A-00 Cable Interface Adapter
  • YOKOGAWA ALR121-S00 Communication Module
  • YOKOGAWA CP461-50 processor module
  • YOKOGAWA AIP121-S00 Control Module
  • YOKOGAWA UR1800 Recorder
  • YOKOGAWA LC82 * A Industrial Controller
  • YOKOGAWA ANR10D bus node unit
  • YOKOGAWA SDV144-S13 Digital Input Module
  • YOKOGAWA NFAI143-H00 Analog Input Module
  • YOKOGAWA EB501 Bus Interface Module
  • YOKOGAWA CP451-10 Process Control Module
  • YOKOGAWA V0/E1/TCAM/L08 Advanced Process Control Module
  • YOKOGAWA VO/E2/TCDM24/L8 high-precision temperature control module
  • YOKOGAWA 16137-119 high-precision digital input module
  • YOKOGAWA 16114-500 module rack
  • YOKOGAWA PSCDM024DCBAN Key Discrete Module
  • YOKOGAWA 16137-151 Process Control Module
  • YOKOGAWA 16137-188 Process Control Module
  • YOKOGAWA 16137-222 Process Controller
  • YOKOGAWA 16137-223 high-precision temperature transmitter
  • YOKOGAWA 16137-153 Digital Input Module
  • YOKOGAWA 866257000 high-precision temperature controller
  • YOKOGAWA 8596020000 Digital I/O Module
  • YOKOGAWA 866256000 high-precision process control module
  • ABB AFS670 19" Ruggedized Switch AFS670-EREEDDDSSEEEEEEEPZYX05.1.0
  • NI VXIpc-871B Controller
  • YOKOGAWA PSCAMAAN Process Control Analog Input Module
  • YOKOGAWA DR1030B60 servo actuator
  • YOKOGAWA ADV551 Digital Output Module
  • YOKOGAWA AAI543 proposed output module
  • YOKOGAWA LR 4220E Level Transmitter
  • YOKOGAWA SR1008B62 External Wiring Module
  • YOKOGAWA SC200S Control Valve Positioner
  • YOKOGAWA PW301 power module
  • YOKOGAWA NP53 * C Precision Control Module
  • YOKOGAWA F3YD64-1A transistor output module
  • YOKOGAWA F3XD64-3N Industrial Module Controller
  • YOKOGAWA F3WD64-3N High Performance Module Controller
  • YOKOGAWA F3SP21-0N CPU module
  • YOKOGAWA F3PU10-0N AC power module
  • YOKOGAWA F3PU06-0N power module
  • YOKOGAWA F3NC02-0N positioning module
  • YOKOGAWA F3NC01-0N positioning module
  • YOKOGAWA F3LC21-1N Multi Link Module
  • YOKOGAWA F3BU06-0N Base Module
  • FORCE PMC234 control module
  • FORCE CPU-2CE/16 Industrial Control CPU Module
  • Foxboro PBCO-D8-010 FBM I/O cards
  • FOXBORO PBCO-D8-009 Digital Output Module
  • FOXBORO FBM207C RH917GY High Density Contact Induction Input Module
  • FOXBORO AD916AE Digital Control System Module
  • FOXBORO FBM217 discrete input module
  • FOXBORO RH926GH processor module
  • FOXBORO H90 H90C9AA0117S Differential Pressure Transmitter
  • FOXBORO P0926GJ high-precision differential pressure transmitter
  • FOXBORO RH928AW control module
  • FOXBORO N-2AX+DIO signal distribution module
  • FOXBORO RH924WA Fiber Optic Network Adapter
  • FOXBORO P0924JH Control System Module
  • FOXBORO H92 Process Automation System
  • FOXBORO PP0926KN control module
  • FOXBORO P0916FH controller
  • FOXBORO E69F-T-I2-JRS on-site installation signal converter
  • FOXBORO P0926JM Standard 200 Series Baseplates
  • FOXBORO E69F-BI2-S Current Pneumatic Signal Converter
  • FOXBORO P0926GU FBM230 Field Equipment System Integration Module
  • FOXBORO RH931RQ cable terminal
  • FOXBORO H92A049E0700 server module
  • FOXBORO H90C9AA0117S Differential Pressure Transmitter
  • FOXBORO RH101AA High Performance Pressure Transmitter
  • FOXBORO FPS400-24 P0922YU power module
  • FOXBORO P0973LN differential pressure transmitter
  • FOXBORO P0926GV FBM231 Field Equipment System Integration Module
  • Foxboro FBM202 P0926EQ thermocouple/mV input module
  • FOXBORO FBMSVL Safety Valve Logic Solver
  • FOXBORO P0926PA Industrial Control Module
  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module