Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Industrial Networks Connecting Controllers via OPC

来源: | 作者:佚名 | 发布时间 :2024-01-15 | 721 次浏览: | Share:

Reliability means the probability of a device remaining failure free during a specified time interval, e.g. the maintenance interval: R = e λt Redundancy is the implementation of extra components in addition to the ones needed for normal operation. Thus, redundancy normally increases reliability and availability. 

2.2 OPC OPC, originally short for “OLE for Process Control”, is an open, standardized software communication interface specification launched in 1996 by a task force of different automation companies, later forming the OPC Foundation. As the former name indicates, OPC is an adaption of Microsoft’s Object Linking and Embedding OLE1 to the process control business, which used to be highly proprietary at that point of time. Thus it was almost impossible to efficiently combine products of different vendors. By providing so-called OPC servers with their devices, buses and software, vendors open their products to any OPC compliant client able to connect to the server for data exchange. Usually, an OPC server can handle several clients at once, while these clients—e.g. visualization or calculation applications—can connect to different servers in order to obtain their needed information.

Over the years, the OPC Foundation has been adding eight additional speci- fications to the original one, therefore the name OPC was freed from its original meaning and is now used as an umbrella term [3]. Some important specifications are quickly explained in the following: DA (Data Access) is the original and most widely used standard of OPC. Its purpose is the cyclic polling of real time data, for example for visualization purposes.

HDA (Historical Data Access), in contrary, specifies the access to already stored data. 

AE (Alarms and Events) describes the non-cyclic, event-based exchange of alarms and events. 

Data eXchange is a specification from 2002 which regulates the direct communication between two OPC servers. For this Master’s Thesis it was made use both of the DA specification for the main purpose of communication as well as the AE specification in order to display and log round-trip times. Unfortunately, the promising Data eXchange specification is almost inexistent in practice and could therefore not be used in our thesis. The underlying technique to exchange data is the component object model COM of Microsoft Windows, therefore OPC can only run on Windows operating systems [4]. A new generation of OPC specifications recently published is called OPC Unified Architecture (OPC UA) and is independent of COM, thus being able to run on more operating systems as well as embedded devices [5]. 

2.2.1 OPC Data Access OPC DA is organized in the hierarchical structure server, group and item. Items correspond to variables and can be read and written. Furthermore, a quality and time stamp is provided with each of them. When reading items, the value usually comes from the OPC server’s cache, which is updated periodically with the values of the device (or bus, component). However, it is usually possible to force a read directly from the device. Clients organize their items in groups, which for example share the same access method and update rate. Each OPC server has an unique name, some vendors even offer the operation of multiple servers for the same device. OPC DA provides different methods to access items, first of all synchronous and asynchronous read and write operations. More important to us, there is also a subscription mechanism, which is commonly used by modern clients in order to reduce communication. That is, the client group subscribes to the server which then “pushes” values towards the client only if they changed respectively exceed a pre-defined dead-band. The client can force an update of all these values by issuing a refresh call, which corresponds to an asynchronous read for all items of a group [6]. 

2.3 Programmable Logic Controllers This section informs about the two controllers involved and about the controller that has to be replaced. Please notice that we use the term controller equivalent to programmable logic controller (PLC) throughout our Master’s Thesis.

2.3.1 Advant Controller 160 (AC160) The AC160 series was launched in 1997 to meet high speed requirements in turbine control. To this day its outstanding performance is needed for fast closed loop control (CLC). For our work, we were provided with a rack RF616 for the physical mounting of the controller parts. The rack also delivers power to each device and includes the BIOB Backplane Input/Output Bus which, among other tasks, processes the communication between the processor module and the communication interface. The tests in this Master’s Thesis were done with processor modules of the type PM665 (containing a Motorola MPC8240 processor) and the AF100 communication interface CI631, both supporting redundancy [7]. To program the processor module, its built-in EIA-232 interface was connected to the engineering PC.

  • TRICONEX 3902AX Universal I/O Card
  • TRICONEX 9760-2 Analog Input Terminal Panel
  • TRICONEX PLM3900N - Trident System Digital Input Module
  • TRICONEX 2483- Analog Output HART Base Board Kit
  • TRICONEX 2481- Analog Output Base Board Kit
  • TRICONEX 2480A - Hazardous Area Analog Output Base Board Kit
  • TRICONEX 2451- Solid State Relay Output Base Board Kit
  • TRICONEX 2402A - Hazardous Area Digital Output Basic Board Kit
  • TRICONEX 2402- High Voltage Digital Output Base Board Kit
  • TRICONEX 2401L - Low Current Digital Output Base Board Kit
  • TRICONEX 2401- Digital Output Base Board Kit
  • TRICONEX 2381 Pulse Input Base Board Kit
  • TRICONEX 2361- Analog/Digital Input Base Board Kit
  • TRICONEX 3700 TMR Analog Input Module
  • TRICONEX 9771-210F Termination Panel Assembly
  • TRICONEX MP3009 Processor Module
  • TRICONEX AO3482 Analog Output Module
  • TRICONEX D28799‑005 Power Interface Module
  • TRICONEX DI3361 Digital Input Module TMR
  • TRICONEX AT-2701FX 843-000844-00 REVD Industrial Ethernet Network Card
  • TRICONEX AI2361 7400210-020 Safety System Module
  • TRICONEX RO3451 Digital Output Module Relay
  • TRICONEX 4351A Industrial Communication Module
  • TRICONEX AI3351 Analog Input Module
  • TRICONEX 4000093-320 Safety Controller Module
  • TRICONEX AI2361 Analog Input Module
  • TRICONEX 2071H 7400313-100 Dual Power Module
  • TRICONEX T8800C PD8800 PCB130100 Module
  • TRICONEX 4000093-316 Power Supply Module
  • TRICONEX 4000094-313 Industrial Safety Control Module
  • TRICONEX 4000093-306 Termination Panel Module
  • TRICONEX 4000103-513 Safety System Module
  • TRICONEX 3700A Safety System Module
  • TRICONEX 4351B Communication Module
  • TRICONEX 4000066-025 Communication Interface Module
  • TRICONEX 4000066-025 9000011-000 Interface Cable
  • TRICONEX 8112 RXM Rack Remote Expansion Module for Tricon System
  • TRICONEX 4000093-145 Industrial Cable Components
  • TRICONEX 4352B Analog Input Module
  • TRICONEX 4000093-110N System Module
  • TRICONEX 3501TN2 Termination Module
  • TRICONEX 4352AN Analog Input Module
  • TRICONEX 3806E High Density Output Module
  • TRICONEX 3008N Enhanced Main Processor Module
  • TRICONEX 3503E Digital Input Module
  • TRICONEX TCM 4355X Communication Module
  • TRICONEX MP3009X / TCM 4355X Main Processor Module
  • TRICONEX PLM 3900N Power Line Monitor
  • TRICONEX DI 3506X Digital Input Module
  • TRICONEX IMSS 4701X Safety System Module
  • TRICONEX 7400212-100 TMR Power Distribution
  • TRICONEX 2000418 Network Management Module
  • TRICONEX 2000417 TMR Communication Interface
  • TRICONEX 3625C1 Output Module
  • TRICONEX TM11-5L-88 Terminal Module
  • TRICONEX 09031647921 System Module
  • TRICONEX JWA600-24 Industrial Power Supply
  • TRICONEX 9753-1 Digital Output Module
  • TRICONEX 3708EN Controller Module
  • TRICONEX 0903-164-7921 I/O Module
  • TRICONEX 0923-141-6957 Safety System Module
  • TRICONEX 1600071-001 System Accessory Module
  • TRICONEX 2402 Digital Input Module
  • TRICONEX 4000056-002 I/O Interface Module
  • TRICONEX 7400213-100 Power Module
  • TRICONEX HCU3700/3703E Communication Unit
  • TRICONEX 43542560 Triple Modular Redundant Module
  • TRICONEX 3664 I/O Module
  • WEIDMULLER 8560740000 Power Supply Unit
  • WEIDMULLER V23057-B3028-A101 Power Relay Technical Specs
  • WEIDMULLER 915917/67 Interface Relay Module
  • WEIDMULLER 8690880000 Power Supply Unit
  • WEIDMULLER 8540180000 Interface Module
  • WEIDMULLER 8607360000 VAK RS 403 3-Way Isolator
  • WEIDMULLER 8533640000 Power Supply
  • WEIDMULLER 844495000 Interface Module
  • WEIDMULLER 7940005785 Signal Converter Technical Guide
  • Weidmuller 836598 Terminal Block
  • Weidmuller 7940005785 Signal Converter Technical Guide
  • WEIDMULLER 7901620000 Interface Module
  • WEIDMULLER 0302860000 Terminal Block
  • WESTINGHOUSE 5X00167G01 Control Module
  • Westinghouse 1C31238H01 Ovation Relay Output Module
  • Westinghouse 5X00321G01 PLC Processor Module
  • WESTINGHOUSE 1C31234G01 I/O Module
  • Westinghouse 1C31233G04 Ovation Digital Input Module
  • WESTINGHOUSE 1C31224G01 I/O Module
  • Westinghouse 1C31227G01 Ovation Analog Input Module
  • Westinghouse 1C31132G01 Signal Conditioning Module
  • Westinghouse 1C31127G01 Analog Input Module
  • WESTINGHOUSE 1C31125G02 I/O Module
  • WESTINGHOUSE 1C31116G04 Analog Input Module
  • Westinghouse 1B30023H01 Ovation Power Supply Module
  • WESTINGHOUSE 1C31179G01 I/O Module
  • Westinghouse KL4503X1-BA1 Automation Controller
  • Westinghouse 5X00453G01 Ovation Analog Output Module
  • WESTINGHOUSE KL4502X1-FA1 Control Module
  • Westinghouse 1C31222G01 Signal Conditioner
  • Westinghouse 1C31132G02 Ovation Valve Positioner Module
  • WESTINGHOUSE 5X00109G02 Control Module
  • Westinghouse 5X00241G04 PLC Interface Module
  • Westinghouse 5X00070G03 PLC System Module
  • Westinghouse 5X00226G04 Ovation Controller Module
  • WESTINGHOUSE 1C31107G01 Analog Input Module
  • WESTINGHOUSE 1C31201G01 PLC Module
  • WESTINGHOUSE 5X00226G01 Ovation Analog Output
  • Westinghouse 5X00501G01 Automation Controller Module
  • Westinghouse 1C31233G02 Signal Conditioning Module
  • WESTINGHOUSE 5X00357G03 PLC Module
  • WESTINGHOUSE 5X00301G01 Ovation Module
  • Westinghouse 5X00300G02 Industrial Controller
  • WESTINGHOUSE 5X00481G04 PLC Module
  • WESTINGHOUSE 5X00499G01 Ovation Module
  • Westinghouse 5X00583G01 Control Module
  • WESTINGHOUSE 5X00497G01 PLC Module
  • WESTINGHOUSE 1C31233G01 Ovation Module
  • WESTINGHOUSE 4D33900G19 Industrial Control Module
  • Westinghouse 5X00225G01 Controller Base Rack for Industrial Automation
  • WESTINGHOUSE 5A26304G02 Ovation I/O Module
  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module