Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Research progress on key technologies of pharmaceutical intelligent manufacturing production line

来源: | 作者:佚名 | 发布时间 :2024-01-31 | 930 次浏览: | Share:

To this end, with the continuous advancement of the pharmaceutical industry 4.0 era, the study of pharmaceutical intelligent manufacturing production line is the trend of The Times, through the combination of intelligent robots and intelligent manufacturing, the construction of integrated, automated intelligent manufacturing production line is an important topic of the pharmaceutical industry, so the study of highly sterile, intelligent pharmaceutical intelligent manufacturing production line is crucial.

2 Key technologies of pharmaceutical intelligent manufacturing production line

The pharmaceutical intelligent manufacturing production line proposed in this paper is an intelligent manufacturing system composed of multiple intelligent robots, such as sterile flexible dispensing robot, sterile filling-transaction-sealing robot, pharmaceutical quality visual inspection robot, sterile sorting and packaging robot, and intelligent handling robot, as shown in Figure 1. It can realize bacteria-free, automated drug production and packaging from pharmaceutical process to packaging process.

As a representative advanced pharmaceutical production line in the field of pharmaceutical equipment manufacturing, it is necessary to study its key technologies. This paper mainly focuses on the key technologies such as inbacterialized intelligent production, visual inspection of medical quality, flexible grasping and intelligent handling, and intelligent coordination and optimization control. Combined with the research results of our own team and domestic and foreign scholars, the research progress is described and analyzed.

2.1 Bactericidal intelligent production

The sterilization operation of pharmaceutical production covers the production environment, packaging materials, drugs themselves and other aspects, and the sterilization process always runs through the beginning and end of the production process. However, the current asphyxiation technology is limited by many factors such as drug types and pharmaceutical processes, and the asphyxiation of pharmaceutical processes has always been an international technical problem in urgent need of breakthroughs [16].

Because the traditional sterilization technology mainly relies on the high temperature sterilization of drugs, it is difficult to meet the sterilization standard of drugs on the one hand, and it is difficult to avoid the secondary pollution of drugs after sterilization. For this reason, JILDEH et al. [17] tried to develop a new sterilization process using hydrogen peroxide, and analyzed and verified it through numerical simulation. The use of supercritical carbon dioxide for sterilization is a green and sustainable technology.

RIBEIRO et al. [18] studied the experimental method of supercritical sterilization and evaluated its effect and application in medicine. In addition, PREEM et al. [19] evaluated the effects of various sterilization methods, such as gamma ray irradiation, ultraviolet irradiation, in-situ generation of chlorine gas and low argon plasma treatment, and studied the changes in drug stability, morphology and other drug properties before and after sterilization. As the selection and evaluation of sterilization process is an important topic for realizing bactericidal intelligent production, SHIRAHATA et al. [20] developed an online decision support tool for the selection of aseptic filling technology in biopharmaceutical production. In addition, ARREOLA et al. [21] proposed a combined biosensor array based on calorimetric gas and spores to monitor and evaluate the germicidal effect of hydrogen peroxide gas in aseptic filling machines.

In this process, the separation of the bottle embryo manufacturing and the subsequent process will lead to the adsorption of bacteria and suspended particles in the air on the drug, thus causing the packaging material to be polluted. Therefore, it is necessary to achieve ultra-clean blowing and sealing in the same mold. In the production line of blowing, filling and sealing of plastic ampoules, a sealed vacuum system and aseptic air flow control were adopted to build a complex electromechanical, temperature, gas and hydraulic control system to realize a new process and principle of blowing, filling and sealing of plastic injection, so as to develop an integrated blowing, filling and sealing pharmaceutical machine to meet the whole process of bacteria-free production of drugs in the same mold.

2.2 Visual inspection of medical quality

The visual inspection of medical quality mainly includes the detection of visible foreign bodies in medicine, the detection of components and the detection of packaging defects. Traditional medical quality detection is mainly through artificial naked eye detection, because the human eye is easy to fatigue, easy to be affected by external interference, easy to lead to missed detection, false detection, resulting in poor product quality, low production efficiency. Therefore, it is very important to develop a visual inspection robot for the quality inspection of oral liquid, ampoule, infusion bottle and other liquid products on the pharmaceutical production line. The pharmaceutical quality visual inspection robot can detect the glass debris, aluminum debris, rubber shavings, hair, fiber and other foreign bodies in the pharmaceutical liquid online, identify the damage of the bottle itself, the packaging quality of the bottle mouth and other defects, and can automatically sort unqualified products.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module