Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Development and control of manufacturing process of chemical raw materials in "Pharmaceutical Research Series"

来源: | 作者:佚名 | 发布时间 :2024-01-31 | 532 次浏览: | Share:



1. API production process development - Core content

The purpose of the development of manufacturing process for apis: 1) Early stage is to develop the development process that can prepare the API in line with the stage quality standards; 2) In the later stage, a commercial production process that can consistently produce the expected quality apis must be established. Based on the above process development logic, some core contents and key tools in process development are listed.

➣ process development method

Manufacturing process development should include, at a minimum, the following elements: 1) identification of potential key quality attributes associated with the drug substance in order to facilitate the study and control of these attributes that affect the quality of the pharmaceutical product; 2) Determine a suitable production process; 3) Determine a control strategy to ensure process implementation and API quality; 4) Systematic methods for evaluating, understanding and improving production processes; 5) Use an enhanced approach combined with quality risk management to establish an appropriate control strategy, which may include, for example, suggestions for design space. In addition, the applicant can choose to use the traditional method or the enhanced method in the development of the API, or use both methods.

Key quality attributes of apis

Critical Quality Attribute (CQAs) : A physical, chemical, biological, or microbiological attribute or characteristic that should be defined to an appropriate limit, range, or distribution to ensure the desired product quality. The key quality attributes of an API typically include those attributes or characteristics that affect identification, purity, biological activity, and stability. Physical properties may also be designated as key quality attributes when they have a significant impact on the production or performance of a pharmaceutical preparation. Impurities are an important key quality attribute for apis because of their potential impact on the safety of pharmaceutical preparations.

➣ Correlation of material properties & process Parameters & key quality attributes

The process development procedure should identify which material properties (e.g. properties of raw materials, starting materials, reagents, solvents, process AIDS, intermediates) and process parameters should be controlled.

In the case of enhancement, the following steps are required to determine the appropriate material quality standard and process parameter range: 1) Identify potential sources of process change; 2) Identify the material properties and process parameters that are likely to have the greatest impact on the quality of the API, based on knowledge and risk assessment tools; 3) Design and conduct studies (e.g., mechanism and/or dynamic evaluation, multivariate test design, simulation, modeling) to identify and determine associations and relationships between material properties and process parameters and key quality attributes of the API; 4) Analyze and evaluate the data to set the appropriate scope, including the establishment of design space if necessary.

➣ Design space

The design space is a multidimensional combination and interaction of input variables (e.g., material properties) and process parameters that have been proven to provide quality assurance. Activities within the design space are not considered changes. An activity that goes beyond the design space is considered a change and usually requires initiating regulatory approval for the change.

The design space for each unit operation (for example, reaction, crystallization, distillation, refining) can be determined, or the design space for a combination of selected unit operations. The selection of unit operations containing such design space is usually based on their impact on key quality attributes and need not be continuous. A design space that spans multiple unit operations provides greater operational flexibility.

2. Production process development -- quality control

Whether developed by conventional means or enhanced means (or both), each API manufacturing process has a control strategy that includes, but is not limited to, the following: 1) control of material properties (including raw materials, starting materials, intermediates, reagents, inner materials in direct contact with the API, etc.); 2) Controls embedded in the design of the production process (for example, the sequence of refining steps, or the sequence in which reagents are added); 3) Process control (including process testing and process parameters); 4) Control of apis (e.g. release testing).

The development of control strategy can be combined with various methods, and some key quality attributes, steps or unit operations are developed in traditional ways. Apply enhancements to other areas. As the level of understanding of the process increases throughout the product life cycle, control strategies can be developed through multiple cycles. In terms of addressing variations in the operating range, the augmentation-based control strategy can provide flexible operating ranges for process parameters.

The control strategy should ensure that the key quality attributes of each API are within the appropriate range, limit, or distribution area to ensure the quality of the API. The quality standard for an API is part of the overall control strategy and not all key quality attributes need to be included in the quality standard for an API. The key quality attributes can be: 1) included in the quality standard and determined by testing of the final API; Or 2) included in quality standards and identified by upstream controls (e.g., through real-time release testing); Or 3) not included in the quality standard, but provided by upstream control. In some cases, process analysis technology (PAT) can be used to enhance process control and ensure product quality.

The information provided on the control strategy should include a detailed description of the individual elements of the control strategy and, where appropriate, an overall summary of the control strategy for the drug substance. It can be in table form or legend form, which is more intuitive and easy to understand. An ideal summary should explain how the various elements of the control strategy work together to ensure the quality of the drug substance.

3. Production process development - life cycle management

The development and improvement of manufacturing processes for apis usually continues throughout their life cycle. The performance of the production process, including the effectiveness of the control strategy, should be evaluated periodically. The knowledge gained from commercial production can be used to further deepen the understanding of the process and its properties, and to adjust the control strategy to ensure the quality of the API. Knowledge gained from other products or innovative technologies also contributes to these goals. Continuous improvement and successful process validation, or continuous process validation, require appropriate and effective control strategies.

Knowledge management should include, but not be limited to, process development activities, technology transfer activities to internal sites and contract manufacturers, process validation studies for the API life cycle, and change management activities. Knowledge and process understanding should be shared as needed to implement manufacturing processes and develop control strategies in the different locations involved in API production. For example, in the initial submission, the applicant may submit a plan for how specific future changes will be managed during the product's life cycle.


  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module