Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

10 advanced technologies in the water treatment industry

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 349 次浏览: | Share:

1. Membrane technology

Membrane separation methods are commonly used in microfiltration, nanofiltration, ultrafiltration and reverse osmosis. Because membrane technology does not introduce other impurities in the treatment process, it can realize the separation of large molecules and small molecules, so it is often used for the recovery of various macromolecular raw materials.

Such as the use of ultrafiltration technology to recover printing and dyeing wastewater of polyvinyl alcohol slurry. At present, the main difficulties that limit the application and popularization of membrane technology are high cost, short life, easy to be polluted and blocked by scale. With the development of membrane production technology, membrane technology will be more and more applied in the field of wastewater treatment.

2. Iron carbon micro-electrolysis treatment technology

Iron-carbon microelectrolysis method is a good process for wastewater treatment using the reaction principle of Fe/C galvanic cells, also known as internal electrolysis method and iron filings filtration method. The iron-carbon microelectrolysis method is a comprehensive effect of electrochemical REDOX, electrochemical electroconcentration of floc, condensation of electrochemical reaction products, adsorption of new floc and bed filtration, among which REDOX, electric adhesion and condensation are the main effects.

When the iron filings are immersed in the wastewater containing a large number of electrolytes, countless tiny galvanic cells are formed. After the coke is added to the iron filings, the iron filings contact with the coke particles to further form large galvanic cells, so that the iron filings are corroded on the basis of micro galvanic cells and corroded by large galvanic cells, thus speeding up the electrochemical reaction.

This method has many advantages, such as wide application range, good treatment effect, long service life, low cost and easy operation and maintenance, and uses waste iron filings as raw materials, and does not need to consume power resources, and has the significance of "treating waste with waste". At present, iron-carbon micro-electrolysis technology has been widely used in dyeing, pesticide/pharmaceutical, heavy metal, petrochemical and oil waste water and landfill leachate treatment, and has achieved good results.

3.Fenton and Fenton-like oxidation process

A typical Fenton reagent is produced by the decomposition of H2O2 catalyzed by Fe2+ to ˙OH, which leads to the oxidative degradation of organic matter. As Fenton process takes a long time to treat wastewater, it uses a large number of test doses, and excessive Fe2+ will increase COD in the treated wastewater and produce secondary pollution.

In recent years, ultraviolet light and visible light have been introduced into the Fenton system, and other transition metals have been studied to replace Fe2+. These methods can significantly enhance the oxidative degradation ability of Fenton reagent on organic matter, reduce the amount of Fenton reagent and reduce the treatment cost, collectively referred to as Fenton-like reaction.

Fenton process has mild reaction conditions, simple equipment and wide application range. It can be used as a separate treatment technology, or combined with other methods, such as coagulation precipitation, activated carbon, biological treatment, etc., as a pretreatment or advanced treatment method of refractory organic wastewater.

4. Ozone oxidation

Ozone process of a pharmaceutical wastewater project

Ozone is a strong oxidizing agent, which reacts quickly with reduced pollutants, is convenient to use, does not produce secondary pollution, and can be used for sewage disinfection, color removal, deodorization, removal of organic matter and reduction of COD. Using ozone oxidation alone is expensive and expensive, and its oxidation reaction is selective, and the oxidation effect on some halogenated hydrocarbons and pesticides is relatively poor.

To this end, in recent years, the development of related combination technologies aimed at improving the efficiency of ozone oxidation, in which UV/O3, H2O2/O3, UV/H2O2/O3 and other combination methods can not only improve the oxidation rate and efficiency, but also can oxidize organic matter that is difficult to oxidize and degrade when ozone acts alone. Due to the low solubility of ozone in water, low production efficiency and high energy consumption, increasing the solubility of ozone in water, improving the utilization rate of ozone, and developing high efficiency and low energy consumption ozone generation devices have become the main research directions.

5. Magnetic separation technology

Magnetic separation technology is a new type of water treatment technology developed in recent years, which uses magnetic separation of impurity particles in wastewater. For non-magnetic or weakly magnetic particles in water, magnetic inoculation technology can be used to make them magnetic.

There are three methods of magnetic separation technology used in wastewater treatment: direct magnetic separation method, indirect magnetic separation method and microbial magnetic separation method.

At present, the magnetization technology mainly includes magnetic agglomeration technology, ferric salt co-sedimentation technology, iron powder method, ferrite method, etc. The representative magnetic separation equipment is disk magnetic separator and high gradient magnetic filter. At present, magnetic separation technology is still in the laboratory research stage and can not be applied to practical engineering practice.

6. Ionized water treatment technology

Low temperature plasma water treatment technology, including high voltage pulse discharge plasma water treatment technology and glow discharge plasma water treatment technology, is the use of discharge directly in the aqueous solution to generate plasma, or the active particles in the gas discharge plasma into the water, which can make the pollutants in the water completely oxidized and decomposed.

The direct pulse discharge in aqueous solution can be operated at normal temperature and pressure, and the chemical oxidizing species in situ can be oxidized and degraded organic matter in aqueous solution without adding catalyst during the whole discharge process. This technology is economical and effective for the treatment of low concentration organic matter. In addition, the type of reactor using pulsed discharge plasma water treatment technology can be flexibly adjusted, the operation process is simple, and the corresponding maintenance cost is low. Due to the limitation of discharge equipment, the energy efficiency of this process to degrade organic matter is low, and the application of plasma technology in water treatment is still in the research and development stage.

7. Electrochemical (catalytic) oxidation

Electrochemical (catalytic) oxidation technology directly degrades organic matter through anodic reaction, or generates hydroxyl radical (˙OH), ozone and other oxidants to degrade organic matter through anodic reaction.

Electrochemical (catalytic) oxidation includes two - and three-dimensional electrode systems. Due to the micro-electric field electrolysis of three-dimensional electrode system, it has been highly respected. The three-dimensional electrode is filled with granular or other detritus working electrode material between the electrodes of the traditional two-dimensional electrolytic cell, and the surface of the loaded material is charged to become the third pole, and the electrochemical reaction can occur on the surface of the working electrode material.

Compared with the two-dimensional flat electrode, the three-dimensional electrode has a large specific surface, can increase the surface ratio of the electrolyzer, can provide a larger current intensity at a lower current density, small particle spacing and high mass transfer speed, high space-time conversion efficiency, so the current efficiency is high and the processing effect is good. Three-dimensional electrodes can be used to treat domestic sewage, pesticides, dyes, pharmaceuticals, phenolic wastewater and other difficult to degrade organic wastewater, metal ions, landfill leachate and so on.

8. Radiation technology

Since the 1970s, with the development of large-scale cobalt sources and electron accelerator technology, the radiation source problem in the application of radiation technology has been gradually improved. The use of radiation technology to treat pollutants in wastewater has attracted the attention of many countries.

Compared with traditional chemical oxidation, the use of radiation technology to treat pollutants does not need to add or only a small amount of chemical reagents, does not produce secondary pollution, has the advantages of high degradation efficiency, fast reaction speed, and thorough degradation of pollutants. Moreover, when ionizing radiation is used in combination with catalytic oxidation means such as oxygen and ozone, a "synergistic effect" will be produced. Therefore, radiation technology to deal with pollutants is a clean and sustainable technology, which is listed as the main research direction of peaceful use of atomic energy in the 21st century by the International Atomic Energy Agency.

9. Photochemical catalytic oxidation

Photochemical catalytic oxidation technology is developed on the basis of photochemical oxidation, compared with photochemical method, has a stronger oxidation capacity, can make organic pollutants more thoroughly degraded. Photochemical catalytic oxidation is a photochemical degradation in the presence of catalysts, and the oxidant produces free radicals with strong oxidation capacity under the radiation of light.

The catalysts are TiO2, ZnO, WO3, CdS, ZnS, SnO2 and Fe3O4. Homogeneous photocatalytic degradation is based on Fe2+ or Fe3+ and H2O2 as the medium, and hydroxyl free radicals are produced by photoassisted Fenton reaction to degrade pollutants. Heterogeneous catalytic degradation is to put a certain amount of photosensitive semiconductor materials in the pollution system, such as TiO2, ZnO, and so on, combined with light radiation, so that the photosensitive semiconductor under light irradiation excitation to produce electron-hole pairs, dissolved oxygen, water molecules adsorb on the semiconductor and electron-hole interaction, resulting in ˙OH and other strong oxidation capacity of free radicals. TiO2 photocatalytic oxidation technology has obvious advantages in oxidizing and degrading organic pollutants in water, especially difficult to degrade organic pollutants.

10. Supercritical water oxidation (scwo) technology

SCWO uses supercritical water as medium to decompose organic matter by homogeneous oxidation. Organic pollutants can be decomposed into small inorganic molecules such as CO2 and H2O in a short time, while sulfur, phosphorus and nitrogen atoms are converted into sulfate, phosphate, nitrate and nitrite ions or nitrogen, respectively. The United States lists the SCWO process as the most promising waste treatment technology in the field of energy and environment.

SCWO has fast reaction rate and short residence time. High oxidation efficiency, most organic matter treatment rate can reach more than 99%; The reactor structure is simple and the equipment size is small. Wide range of treatment, not only can be used for a variety of toxic substances, wastewater, waste treatment, can also be used to decompose organic compounds; No need for external heating, low processing cost; Good selectivity, by adjusting the temperature and pressure, can change the density of water, viscosity, diffusion coefficient and other physical and chemical characteristics, so as to change its solubility of organic matter, to achieve the purpose of selective control of reaction products.

The supercritical oxidation method has been applied in the United States, Germany, Sweden, Japan and other European and American countries, but the research in China started late and is still in the laboratory research stage.


  • FOXBORO RH931RQ cable terminal
  • FOXBORO H92A049E0700 server module
  • FOXBORO H90C9AA0117S Differential Pressure Transmitter
  • FOXBORO RH101AA High Performance Pressure Transmitter
  • FOXBORO FPS400-24 P0922YU power module
  • FOXBORO P0973LN differential pressure transmitter
  • FOXBORO P0926GV FBM231 Field Equipment System Integration Module
  • Foxboro FBM202 P0926EQ thermocouple/mV input module
  • FOXBORO FBMSVL Safety Valve Logic Solver
  • FOXBORO P0926PA Industrial Control Module
  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card