Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Generator content

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 856 次浏览: | Share:

In practical applications, nonlinear loads exist in both the client and the network. Half wave load and rectifier bridge circuit are common nonlinear load forms. Rectifier bridge circuit is the most common input circuit form in power electronic devices, and also the most common nonlinear load form at present. The biggest harm caused by nonlinear load is the distortion of the system voltage and current waveform, which leads to the degradation of the output waveform quality. Therefore, the current relevant standards in China clearly specify the technical indicators of the output waveform quality of grid-connected inverters. Harmonics are two key factors that affect the output waveform quality of grid-connected inverters. The output of PV grid-connected inverter has the problem of DC injection, that is, there is DC component in the grid-connected current. In recent years, with the wide application of uninsulated grid-connected inverters, the harm caused by this problem has become more and more serious, and has attracted wide attention.

In photovoltaic systems using uninsulated grid-connected inverters, DC components will be directly injected into the grid, causing serious harm to the grid, such as DC magnetic bias of transformers at all levels of substations. In grid-connected photovoltaic systems using grid-connected inverters, although the isolation transformer can inhibit the output DC component of the grid-connected inverter to a certain extent, the magnetic core saturation, output waveform distortion, increased loss, and shortened service life will also lead to a significant increase in cost, and the DC component will also damage the transformer itself. The research results of Spanish scholars on the output DC component of inverters show that there is still DC component in the grid-connected current of photovoltaic inverters. Therefore, the research on DC injection of PV grid-connected inverters has important practical significance.

2. High and low voltage crossing technology

In recent years, with the rapid development and wide application of photovoltaic grid-connected power generation, the proportion of photovoltaic power generation in the world's energy consumption and power supply is increasing. Once the grid fails, the security of the grid becomes increasingly high. The traditional high penetration rate (proportion in the grid) of photovoltaic power supply is disconnected, which further worsens the operation of the grid, causing serious accidents, and cannot meet the requirements of the normal operation of the power system. The State Grid Corporation of China has also issued the "Technical Regulations for Photovoltaic Power Station grid-connection", which clearly stipulates that when the power grid is abnormal, small photovoltaic power stations are used as the load and the power grid is cut off as soon as possible; For large and medium-sized photovoltaic power stations, it should be considered as a power supply, with a certain low-voltage overcurrent capacity, and provide reactive power support for the system to maintain grid stability. The research of grid-connected inverter overcurrent technology mainly focuses on the low-voltage overcurrent of wind power generation. To -D. When an accident or power system interruption causes the power supply and grid voltage to drop, the grid-connected power supply can ensure continuous operation within a certain voltage drop range and time interval (without connecting the grid). This paper mainly studies the low-voltage overcurrent problem of large-scale photovoltaic power plants. This is because when the grid voltage drops, the grid-connected inverter as the grid-connected power interface reduces the injected power of the grid due to its current capacity limitation. Therefore, the imbalance of input and output power will lead to DC side overvoltage. If the DC voltage remains stable, the output current of the grid-connected inverter is too large, endangering the safety of power electronic equipment.

In addition, according to the characteristics of the photovoltaic array, the output power of the photovoltaic array decreases with the increase of the output voltage until the open circuit voltage is reached and the output power is zero. Therefore, the current research on low-voltage overcurrent of photovoltaic grid-connected power supply is mainly to suppress the overcurrent of photovoltaic grid-connected inverters. The technology of high voltage switch corresponding to low voltage switch has not been paid enough attention. At present, the relevant regulations of our country are mainly off-grid operation. Since wind power is generally located at the end of the grid, the voltage fluctuation of the grid is mainly caused by the drop, and the intersection must be mainly low-voltage. Therefore, once the grid voltage suddenly rises, it is also necessary to study the high-voltage switch of the photovoltaic grid-connected power supply.

3. No interconnection line parallel technology

With the development of the world economy and the increasing number of power equipment, people have put forward higher and higher requirements for the power level and reliability of the power system. Due to the limitation of the power level of the inverter power supply, people have higher and higher requirements for the inverter power supply. The power supply mode of a single inverter can not meet the requirements of high power and ultra-high power. Therefore, the focus is on increasing the power level of the inverter by running multiple inverter modules in parallel. Parallel inverter technology is not only an important means for power system to develop to high power. At the same time, it is also a key technology for the development from centralized to distributed. It appeared in the early 21st century and has been rapidly developed and applied in the following years. The United States, Germany, Japan and other developed countries have conducted in-depth research on this.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module