Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Four basic operating modes of friction nanogenerator

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 492 次浏览: | Share:

Friction nanogenerators are a disruptive technology with unprecedented output performance and benefits. Compared with classical electromagnetic generators, the high efficiency of friction nanogenerators at low frequencies is unmatched by similar technologies. At the same time, it can also be used as a self-actuated sensor to sense information about static and dynamic processes generated by mechanical triggers.

Nanogenerators will be another major application of Maxwell displacement current in energy and sensing after electromagnetic wave theory and technology, which has the potential to lead technological innovation and profoundly change human society.

Today's electronic devices are mostly related to human activities, mainly for health, safety and communication. The most abundant form of energy associated with humans is the mechanical energy produced by human movement. Recently, we discovered that when two different materials come into contact, their surfaces generate positive and negative electrostatic charges as a result of contact. When the two materials are separated due to mechanical force, the positive and negative charges generated by contact electricity also separate, and this charge separation will correspondingly produce an induced potential difference on the upper and lower electrodes of the material. If a load is placed between the two electrodes or if there is a short circuit, this induced potential difference drives electrons through an external circuit to flow between the two electrodes - this is the friction nanogenerator (TENG) first invented by Wang's group in 2012, whose main goal is to collect small-scale mechanical energy. The TENG has the following four basic working modes.

Four basic operating modes of friction nanogenerator. (a) Vertical contact-separation mode; (b) Horizontal sliding mode; (c) Single-electrode mode; (d) Independent layer mode (This drawing has been licensed by the Royal Society of Chemistry)

Vertical contact-separation mode

We take TENG's simplest design as an example (FIG. 1a) in this structure, two dielectric films of different materials are stacked face to face, each with a metal electrode plated on its back surface. When the two dielectric films contact each other, surface charges with opposite symbols are formed on the two contact surfaces. When the two surfaces are separated due to external forces, a small air gap is formed in the middle, and an induced potential difference is formed between the two electrodes. If two electrodes are connected by a load, electrons will flow from one electrode to the other through the load, creating an inverse potential difference to balance the electrostatic field. When the air gap between the two friction layers is closed, the potential difference formed by the friction charge disappears and the electrons return.

Horizontal sliding mode

The initial structure of this mode is the same as that of the vertical contact-separation mode. When two dielectric films come into contact, a relative slip occurs between the two materials along a horizontal direction parallel to the surface, which can also generate friction charges on the two surfaces (Figure 1b). In this way, polarization is created in the horizontal direction, which can drive electrons to flow between the upper and lower electrodes to balance the electrostatic field generated by the friction charge. An AC output can be produced by periodic sliding separation and closure. This is the basic principle of the sliding TENG. This kind of sliding can exist in many forms, including plane sliding, cylindrical sliding and disk sliding. We have conducted relevant studies on these structures to gain a more comprehensive understanding of the sliding patterns and the more complex lattice structures within them.

Single electrode mode

Both modes of operation described earlier have two electrodes connected by a load. In some cases, parts of the TENG are moving parts (such as when a person is walking on the floor), so electrical connections via wires and electrodes are not convenient. To facilitate the collection of mechanical energy in this case, we introduced a single-electrode mode of the TENG, that is, with electrodes only at the bottom and grounded (Figure 1c). If the size of the TENG is limited, the upper charged object approaching or moving away from the lower object will change the local electric field distribution, so that electrons will exchange between the lower electrode and the earth to balance the change in electric potential at the electrode. This basic mode of operation can be used in both contact-separation structures and sliding structures.

Independent layer pattern

In nature, moving objects are often electrically charged due to contact with air or other objects, just as our shoes are electrically charged when walking on the floor. Because the charge density on the surface of the material will reach saturation, and this electrostatic charge will remain on the surface for at least a few hours, continuous contact and friction are not required during this time. If we plated two unconnected symmetrical electrodes on the back of the dielectric layer, and the size and spacing of the electrodes are of the same order as the size of the moving object, then the reciprocating motion of the charged object between the two electrodes will cause the change of potential difference between the two electrodes, and then drive the electrons to flow back and forth between the two electrodes through the external circuit load. To balance the variation of the potential difference (Figure 1d). The reciprocating motion of electrons between the pair of electrodes can form a power output. The moving charged object does not necessarily need to be in direct contact with the upper surface of the dielectric layer. For example, in rotation mode, one disk can rotate freely without direct mechanical contact with the other part, which can greatly reduce the wear of the material surface, which is very beneficial for improving the durability of the TENG.

Collect physical photos of TENG in various forms of mechanical energy. These TENG and corresponding mechanical energy forms include: (a) the energy of finger tapping; (b) Air movement and wind energy; (c) in-plane sliding energy; (d) The closed cavity TENG is used to collect water energy and mechanical vibration energy; (e) The kinetic energy of human motion that can be collected with textiles; (f) Use transparent TENG to collect energy for touch screen operation; (g) Energy of foot and hand clapping; (h) Impact energy of water; (i) Cylindrical TENG is used to collect rotational energy; (j) The TENG placed in the shoe is used to collect the energy of walking; (k) A flexible grid structure to collect sliding energy; (l) Disk TENG is used to collect rotational energy (this image has been licensed by the Royal Society of Chemistry)

Based on the four basic working modes described above, we have prepared various TENG structures for specific applications. FIG. 2 is a picture of the TENG we prepared for collecting different forms of mechanical energy. These structures are the basic components that provide micro and nano energy for small electronic devices, and by integrating multiple such basic components together, it is possible to use this basic principle for large-scale power generation.

Maxwell Shift Current's future Emerging Industries: Energy and Sensing

The extensive economic, cultural, and political connections that modern society has established through broadcasting and communication satellites over the past 20 centuries are directly attributable to the displacement current term of Maxwell's equations. The history of physics holds that Newton's classical mechanics opened the door to the mechanical age, while Maxwell's theory of electromagnetism laid the cornerstone for the information age. In 1931, Einstein described Maxwell's work as "the most profound and fruitful work in physics since Newton."

From 1886 to the 1930s, the electromagnetic wave theory was first derived from the displacement current, and the electromagnetic induction phenomenon gave birth to antenna broadcasting, television telegraphy, radar microwave, wireless communication and space technology. In the 1960s, the theory of electromagnetic unified production of light provided an important physical theoretical basis for the invention of laser and the development of photonics. In addition, the control and navigation of aircraft, ships and spacecraft, and the technological advances in the power and microelectronics industries are inseparable from Maxwell.

Since 2006, the second component of displacement current, based on the characteristics of media polarization, has spawned the rise of piezoelectric nanogenerators and friction nanogenerators, which will greatly promote the development of new energy technology and self-powered sensor technology. The nanogenerator energy system is widely used in major aspects affecting future human development such as the Internet of Things, sensor networks, blue energy and even big data. After more than 150 years of space-time imprint, tracing back to the source, the nanogenerator is another important application of Maxwell displacement current in energy and sensing after electromagnetic wave theory and technology.

Major fundamental scientific, technical, and industrial implications derived from the two components of Maxwell's displacement current. On the left is derived electromagnetic wave theory that influenced the development of communication technology in the 20th century; On the right are new technologies derived from displacement currents for energy and sensors that could greatly influence the future of the world

In the foreseeable future, this tree, which draws on the nutrition of the first equations of physics, will grow stronger and stronger, and it is possible to lead technological innovation and profoundly change human society.

Friction nanogenerators are a disruptive technology with unprecedented output performance and benefits. Compared with classical electromagnetic generators, the high efficiency of friction nanogenerators at low frequencies is unmatched by similar technologies. At the same time, it can also be used as a self-actuated sensor to sense information about static and dynamic processes generated by mechanical triggers. "Friction Nanogenerator" is the first monograph to systematically and comprehensively introduce the four operating modes of friction nanogenerators, as well as the corresponding theoretical models and calculations, device design, and their extensive applications in the recovery of kinetic energy such as human motion, vibration, wind energy, ocean energy, and water flow. The application examples of friction nanogenerators in mobile/wearable/flexible electronic products, biomedical devices, sensor networks, Internet of Things, environmental protection and sensing, infrastructure inspection and blue energy are also systematically introduced. Importantly, Wang recently discovered that the second component of Maxwell's displacement current is the theoretical basis for nanogenerators. Nanogenerators will be another major application of Maxwell displacement current in energy and sensing after electromagnetic wave theory and technology, which has the potential to lead technological innovation and profoundly change human society.


  • Honeywell TK-IAH161 - 1PC ANALOG INPUT New Shipping DHL or FedEX
  • Honeywell PX45A - "8 Points/mm (203dpi), Rewind, LTS, Disp. (Color), RTC, Ethernet,"
  • Honeywell 51309276-150 - / 51309276150 (NEW NO BOX)
  • Honeywell 82408217-001 - / 82408217001 (NEW NO BOX)
  • Honeywell BK-G100 - Elster U160 Gas Meter DN100 #3485
  • Honeywell MIDAS-M - 1PC MMC-A2U20000 Detector (DHL or FedEx) #H254CC YD
  • Honeywell 621-9938R-RP - Serial Input/Output Module 22572 Vr 3.2 94V-0
  • Honeywell U2-1018S-PF - NEW flame detector DHL Fast delivery
  • Honeywell TK-PRR021 - 51309288-475 redundancy module
  • Honeywell 50129828-003 - Temperature Transmitter
  • Honeywell 3151080 - RING SET P/N (HONEYWELL) NS COND # 11344 (4)
  • Honeywell 4DP7APXPR311 - CIRCUIT BOARD
  • Honeywell MG-818 - Symbol Generator P/N 7011675-818
  • Honeywell TC-IAH161 - NEW PLC Module One year Warranty#XR
  • Honeywell 51304800-100 - 30731808-004 Regulator Card REV B
  • Honeywell MU-FOED02 - UCN EXTENDER PN:51197564-200 REV F
  • Honeywell MC-PAIL02 - 51304907-100 Specii Input/Output Module Rev E
  • Honeywell SPS5713 - 51199930-100 NSMP
  • Honeywell XS858A - Mode S Transponder 7517401-960 Removed Working
  • Honeywell SK-5208 - Fire Panel Maintenance Service 6MonWarri UPS Express SK5208 Zy
  • Honeywell 51403422-150 - NEW HDW COMM CTRL CONTROLLER
  • Honeywell IBI-AD - Yamatake- 82407390-001/ 82408215-001 PCB Card
  • Honeywell 51401635-150 - / 51401635150 (USED TESTED CLEANED)
  • Honeywell ANT67A - TCAS Antenna 071-01548-0100 w/ March 2024 Overhauled 8130
  • Honeywell TC-IAH161 - NEW PLC Module One year Warranty
  • Honeywell 620-3632C - CPU. . (UK And EU Buyers Read)
  • Honeywell PX45A - "12 Points/mm (300dpi), Rewind, LTS, Disp. (Color), RTC, Ethernet"
  • Honeywell K4LCN-4 - 51402755-100 Processor Card Rev: F 51305099-100 B
  • Honeywell 2001-400-150-126-200-20-100001-1-0-00 - REPAIRED PNEUMATIC ACTUATOR
  • Honeywell GGSI - 51401914-100 HDW B FW A R400 51400996-100 Rev C PLC Board Module
  • Honeywell 184637 - TRANSDUCER P/N (HONEYWELL) NS CONDITION #12517
  • Honeywell WEB-600E - Network Controller Via DHL or FedEx
  • Honeywell 620-0073C - / 6200073C (USED TESTED CLEANED)
  • Honeywell 05704-A-0144 - / 05704A0144 (NEW NO BOX)
  • Honeywell RI-406 - P/N 4026206-940 (Sperry) Instrument Remote Controller
  • Honeywell AAU-32/A - ALTIMETER ENCODER P/N 99251-3252011-0101 REP TAG # 12197
  • Honeywell T-1204-1174 - 51304907-100 Spcii I/O Module
  • Honeywell TK-PRS021 - Control Processor Expedited Shipping TKPRS021 Spot Goods Zy
  • Honeywell MU-TD0D13 - 51304650-100 / MU-TDOD13 Digital Output FTA SS Relay Rev. H
  • Honeywell STD810-A1HC4AS-1-A-AD0-11S-A-00A0-00-0000 - NSMP
  • Honeywell PI000-05076 - "target, M2000 sputtering, 59.5Ti/.5CU, 4.460X11.64X13.050, "
  • Honeywell 51401286-100 - / 51401286100 (NEW NO BOX)
  • Honeywell MIDAS-M - 1PC MMC-A2U20000 Detector (DHL or FedEx)
  • Honeywell CC-PDIL01 - 1PCS PKS DI 24V IOM 51405040-175() /PL3
  • Honeywell TK-PRS021 - 51404305-375 NSNP
  • Honeywell STR93D-21C-1K0AFCAA21A0-A1,CC,F8,FC,FF,MB,TG,W2,3H-XXXX - NSMP
  • Honeywell 9437310 - Measurex - - MxOpen UAP (Unitec Applications Processor)
  • Honeywell 51305552-100 - / 51305552100 (USED TESTED CLEANED)
  • Honeywell 97350 - Target /BP Assy .25 IN TI 5N AMAT Endura Applied Materials New
  • Honeywell 51305508-200 - / 51305508200 (NEW NO BOX)
  • Honeywell U2-1018S-PF - Brand New Expedited Shipping
  • Honeywell 2MLR-AC22 - "Masterlogic-200 ,2MLR-DBSF,2MLF-AD4S Rack Modules"
  • Honeywell 2075252-D2 - Enraf PCB XPU1 + Display Mount 2558 584-1
  • Honeywell MC-PAIL02 - 51304481-150 Low Level Analog Input Module FW: K
  • Honeywell 51304493-200 - PM Modem Card Rev.K
  • Honeywell C7012F1052 - Flame Detector Expedited Shipping UPS Express GQ
  • Honeywell WA800 - Radar Antenna MI-585353 w/ May 2024 Inspected 8130
  • Honeywell W7704D-1016 - / W7704D1016 (NEW IN BOX)
  • Honeywell VE4100B3000 - Brand NEW gas solenoid valve one year warranty
  • Honeywell MIDAS-M - MMC-A2U20000 Detector #H254CC YD
  • Honeywell C-AA201 - 30734772-002 Auxiliary Alarm With Relay Board PWB
  • Honeywell 51401598-200 - Time-Sync Communication Daughter Card
  • Honeywell MCT202 - Communicator Brand New Fast Shipping via DHL
  • Honeywell WEB-600E - Network Controller Via DHL or FedEx
  • Honeywell VE4100B3000 - NEW gas solenoid valve one year warranty
  • Honeywell AZ960 - 7024900-90 Air Data Computer
  • Honeywell FC-RUSIO-3224 - Programmable Logic Controller Module
  • Honeywell SM200 - Servo Drive 4006719-921 w/ October 2023 Inspected 8130
  • Honeywell V5013C1019U - New 1PC V5013C1019/U 1 year warranty
  • Honeywell MU-PPIX02 - Pulse Input Module 51304386-100
  • Honeywell CC-TAON01 - 1PCS Module 51308371-175 Brand new
  • Honeywell U2-1018S-PF - New Flame Detector DHL
  • Honeywell TC-IAH161 - 1PC PLC Module TCIAH161 Via DHL or FedEX
  • Honeywell SPS5713 - 51199930-100 (AS PICTURED) NSMP
  • Honeywell TK-CCR014 - REDUNDANT NETINTERFACE NEW ORIGINAL FREE EXPEDITED SHIPPING/
  • Honeywell DR45AT-1000-00-011-0-000000-0 - 120/240VAC NSMP
  • Honeywell XNX-UTAI-RNNNN - Universal Transmitter New DHL
  • Honeywell 82408449-001 - Yamatake- IBCD Card PCB
  • Honeywell K2LCN-8 - Via DHL or FedEx
  • Honeywell FC-PSU-UNI2450U - V2.1 Power Supply Module
  • Honeywell CD815 - Control Display Unit 7022360-902 Removed Working
  • Honeywell MCB3-A3C1REZ-020 - 0 to 100 PPM LCD Display Multi-Gas Detector
  • Honeywell HP600 - High Power Amplifier 7516250-60050 Removed Working
  • Honeywell C7061F2001 - 1PC New replace C7012F1052 flame detector Fast Shipping
  • Honeywell 620-0025RC - 1pcs Brand New Fast Fast Shipping
  • Honeywell ED-600 - 7003403-901 Electric Display with Mods (Cracked Face)
  • Honeywell 3075388-2 - ", TRANSDUCER PN "
  • Honeywell EN-2018-5607 - Smartline HART Communication Assy
  • Honeywell EX52710100036 - / MTU EXHAUST TURBOCHARGER
  • Honeywell Q7055A-1007 - / Q7055A1007 (USED TESTED CLEANED)
  • Honeywell 51304190-200 - E Jumper Card 51304189 Rev A
  • Honeywell TK-PRR021 - 1PC New PLC Module in box 1 year warranty#XR
  • Honeywell PGM-7340 - RAE 3000 VOC Detector Shipping
  • Honeywell 05704-A-0145 - / 05704A0145 (NEW NO BOX)
  • Honeywell C7012F1052 - New UV Flame Detector Free Expedited Shipping
  • Honeywell MC-PAIL02 - 51304481-150 Low Level Analog Input Module Rev: E
  • Honeywell 80363969-150 - / 80363969150 (NEW IN BOX)
  • Honeywell 8694700 - USED MEASUREX COP PROCESSOR
  • Honeywell 900C70-0360-00 - 5VDC NSMP
  • Honeywell 51401392-100 - ",51403422-150,51304485-100 Module Rack 24VDC"
  • Honeywell CC-PDOB01 - / CCPDOB01 (NEW IN BOX)
  • Honeywell SPS5785 - NEW 1PCS 51198651-100 replace 51198947-100 HPM POWER SUPPLY
  • Honeywell 965-1210-020 - "EGPWS Computer w/ GPS MK VIII, P/N: , HONEYWELL"
  • Honeywell VE4100B3000 - NEW gas solenoid valve one year warranty
  • Honeywell PW6K1R2 - 13PCS Brand New Expedited Shipping
  • Honeywell TSQUALWDX-07821 - "Sputtering Target 59Al/1Cu 7.830x11.640x13.050"" New"
  • Honeywell 900C70-0360-00 - 900 CONTROL STATION Touch Screen
  • Honeywell 620-0036 - / 6200036 (NEW IN BOX)
  • Honeywell DR45AT-1100-00-001-0-00000E-0 - 120/240VAC UNMP
  • Honeywell LG1093AA24 - NEW ULTRAVIOLET FLAME SENSOR 261A1812P012
  • Honeywell TC-IAH161 - ANALOG INPUT TCIAH161 NEW ORIGINAL FREE EXPEDITED SHIPPING/
  • Honeywell TK-PRS021 - F/W G 24VDC 1.6A NSNP
  • Honeywell G3I-D22C - Programmable Logic Controller 12-24Vdc 5-11Ma
  • Honeywell TK-PRS021 - / TKPRS021 (NEW NO BOX)
  • Honeywell VM3A - "Thor - 30.7cm (12.1in) - 1024 x 768 Pixel - LED - Capacitive"
  • Honeywell MCL1326 - HOUSING ASSY P/N (HONEYWELL) NE COND # 11383 (4)
  • Honeywell 50126003-001 - Smartline Integrally Mounted Basic Indicator Rev A
  • Honeywell 053669-01 - "USED MEASUREX PC BOARD REV. A, 05366901"
  • Honeywell 620-0025RC - 1pcs Brand New Fast Shipping FedEx or DHL
  • Honeywell FC-RUSIO-3224 - 1pc Brand New Programmable Logic Controller Module
  • Honeywell 7000836-916 - Display Unit Attitude Reference Indicator Agusta A109E #AR
  • Honeywell STF724-E1HS4A-H1F-A-AHC-11C-B-01A0-F1-000 - ST 700 Pression Transmett
  • Honeywell PGM-7340 - ppbRAE 3000+ VOC Gas detector
  • Honeywell MCT202 - Communicator Fast Shipping
  • Honeywell QPP-0002 - Security Manager 24vdc Processor
  • Honeywell 8C-PCNT02 - New C300 Controller In Box DHL
  • Honeywell 1616-350-01A - Iridium FlightDeck Tranceiver P/N
  • Honeywell V5013C1019U - New V5013C1019/U 1 year warranty