Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Green ship low carbon response strategy

来源: | 作者:佚名 | 发布时间 :2023-12-04 | 642 次浏览: | Share:

2. The independent development ability of green ship supporting equipment and technology cannot meet the demand

The technical capability and environmental performance of ship supporting equipment greatly affect the "green" level of the entire ship industry. In recent years, a new generation of energy-saving, emission-reduction, low-noise green ship power, supporting mechanical and electrical equipment, ship environmental protection equipment and materials have been launched, becoming the mainstream trend of Marine energy-saving technology in the world, and promoting the development of emerging green ship technology and industry [19]. However, China has not yet carried out systematic research in the field of key supporting technologies for ship energy conservation and emission reduction, and scientific research forces in the directions of high efficiency and energy conservation, vibration and noise reduction, energy conservation and emission reduction, and new materials have not formed a joint force, and "skirmding" has led to small research forces and weak integrated innovation capabilities, making it difficult to achieve efficient transformation of scientific research results into productivity. The core technologies of some of the core supporting equipment of green ships, such as dual-fuel engines and thin-film envelope systems, still rely on foreign patent owners. Moreover, the green transformation of the shipping industry requires enterprises to make a large amount of investment, and the rise in operating costs may weaken its original market competitive advantage, which will affect the enthusiasm of enterprises to participate in the green reform of the shipping industry. In the context of increasing Sino-US trade friction, it is urgent to consider and solve the problem of breaking through the key supporting equipment and "blocking neck" technology of China's green ships as soon as possible, forming the ability of independent development, and building a healthy internal cycle of the green ship industry.

3. Green ship technology innovation and standards to lead the lack of power

Norway, Japan, the United Kingdom and other countries attach great importance to seize the international leading technology plateau with tight time arrangement and efficient technology research and development when formulating the development plan of green ships, so as to participate in the formulation of relevant standards and norms of international organizations and highlight their own voice. In terms of technology research and development, emphasis is placed on green design and innovation from the aspects of new alternative fuel, hull optimization design, green power propulsion, etc. Although China's green ship research and development and construction have made breakthroughs in some fields, but on the whole has not reached the international advanced level; The initiative of independent innovation of green ship design technology under the international Ship Energy efficiency Design Index is insufficient. Most of them are forced to meet the pressure of international conventions, new codes and new standards, through additional energy saving and emission reduction equipment and improvement based on the existing ship framework structure, and lack of pioneering green ship design concepts.

Second, countermeasures and suggestions

As an important participant in the United Nations action on climate change, China put forward its carbon emission reduction target for 2030 at the Paris Climate Change Conference in 2015. The development of green ships is an important way to practice international emission reduction commitments, and also an important opportunity to promote the transformation and upgrading of China's shipbuilding industry. 2020-2030 is the key period to accelerate the breakthrough of green ship core technology, only by fully grasping this key window period, can we prepare for the realization of green ship marketization and industrialization after 2030. It is recommended to plan the development strategy of green ships as soon as possible from the national and industry levels, reverse the situation of passive following, imitation, and import if it cannot be made, and fully evaluate the basic conditions in the field of domestic green research and development and manufacturing at the same time, give full play to the advantageous resources and strength at home and abroad to make breakthroughs in key "jam neck" technologies.

(1) Strengthen government leadership and formulate national and industry-level green ship development plans

1. Guide development direction with policy planning and promote resource integration

Green ships are an important opportunity for China's shipbuilding industry to enhance international competitiveness and ensure sustainable development. We should base on the development needs of the shipbuilding industry, benchmark domestic and foreign carbon emission reduction targets, establish the strategic position of green ship development from the national and industry level as soon as possible, and formulate a systematic and operable green ship development plan. Promote and guide the integration and utilization of research forces and resources of relevant domestic enterprises and research institutes with policy planning, reduce repetitive and low-quality inputs, focus on key development directions, and accelerate the breakthrough of the core key technology system of green ships.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card