Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Wind power generation principle and wind power generation process

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 577 次浏览: | Share:

6. Aerodynamic model and shafting model

6.1 Aerodynamic model

Pitch Angle control:

To maintain the optimal tip ratio, the wind turbine speed needs to be adjusted according to the wind speed change, so only variable speed operation can ensure that the wind turbine captures the maximum wind energy and the highest efficiency.

V R / ωλ = Energy of the wind refers to the dynamic energy of the wind. The dynamic energy of air with a given mass can be calculated by using the following common formula.

Energy = 1/2 X mass X velocity ^2

The work rate of the wind blowing through a particular surface volume can be calculated using the following common formula.

Work rate = 1/2 X air density X area X (velocity)^3

Among them,

The power rate is watts per bit;

Air density per position is 1000 g/cubic meter;

Surface volume refers to the transverse surface volume of gas flow, and the single position is square meters.

Velocity unit is m/s.

At the height of the sea level and 15 degrees of photography, the air density of dry air is 1.225 kg/m3. Air density varies with air pressure and temperature. As the altitude increases, the air density also decreases.

In the above formula, it can be seen that the work rate of the wind is positively proportional to the cubic square of the velocity and to the product of the swept surface of the wind wheel. In fact, the wind wheel can only lift a part of the energy of the wind, but not the whole.

2) Working principle of wind power generator

Modern wind power generators use aero-dynamic mechanics, just like the wings of an airplane. The wind does not "push" the blades of the wind wheel, but the pressure difference that blows through the blade shape into the positive and opposite sides of the blade. This pressure difference produces a lifting force that causes the wind wheel to spin without breaking the transverse wind flow.

The wind wheel of the wind generator can not take up the work rate of the wind. According to Betz's law, the maximum power that can be extracted by the theoretical wind motor is 59.6% of the power of the wind. Most wind turbines can only extract 40% or less of the power of the wind.

The main package of the wind generator consists of three parts: the wind wheel, the cabin and the tower pole. The most common structure of the large type of wind power generator connected to the electric grid is the cross-axis three-blade wind wheel, which is mounted on the vertical tubular tower rod.

The blades of the wind wheel are made of composite materials. Unlike the small wind generator, the wind wheel of the large wind generator is slow. A more simple wind generator uses a fixed speed. Generally, two different speeds are used - low speed in weak winds and high speed in strong winds. The responsive step generator of these constant speed wind turbines can directly generate alternating current of network frequency.

Newer designs are generally variable (such as Vestas' V52-850 kW wind motors, which run from 14 RPM to 31.4 RPM). With variable speed operation, the air-air dynamic efficiency of the wind wheel can be improved, more energy can be extracted, and the noise is lower under weak wind conditions. For this reason, the variable speed wind turbine design is more and more popular than the constant speed wind turbine.

The sensor installed on the cabin detects the direction of the wind, and through the steering machine is installed to make the cabin and the wind wheel automatically turn to face the wind.

The rotating movement of the wind wheel is transmitted to the generator in the cabin through the gear wheel speed change box (if there is no gear wheel speed change box, it is directly transmitted to the generator). In the wind power industry, the wind power generator equipped with variable speed box is very common. However, the multi-pole direct drive generator designed for wind turbines has also made significant progress.

Transformers at the bottom of the tower (or some in the engine room) can raise the generator voltage to the distribution network voltage (11 kV in the case of Hong Kong).

The power output of the generator varies with the wind force. Under strong wind, the two most common methods of limiting power output (limiting the pressure of the wind wheel) are the stall adjustment and the Angle adjustment. In the case of an air generator with speed retarding regulation, strong wind exceeding the fixed speed will cause the air flow passing through the plate to produce turbulence, causing the wind turbine to lose speed. When the wind force is too strong, the brake at the tail of the plate will be activated, causing the wind wheel to brake the car. So that the wind turbine with oblique Angle adjustment, each blade can be enough to rotate in the longitudinal direction as the axis, the blade Angle changes with the wind speed, and from then to change the air and air dynamic force performance of the wind wheel. When the wind force is too strong, the blade turns to the edge of the air facing the wind, and the wind wheel brakes the car.

The blade is embedded in the lightning rod, when the blade is struck by lightning, it can guide the current in the flash to the ground

  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor
  • Yaskawa JZNC-XPP02B Teaching Programmer
  • YASKAWA CACR-SR07BE12M servo drive
  • YASKAWA JAMSC-B2732V Advanced Drive Controller
  • YASKAWA JGSM-06 Controller
  • YASKAWA PCCF-H64MS 64MB Industrial Memory Module
  • YASKAWA CACR-02-TE1K servo driver
  • YASKAWA JAPMC-IQ2303 Controller Module
  • YASKAWA DDSCR-R84H Controller
  • YASKAWA JANCD-XTU01B circuit board
  • YASKAWA JANCD-XIO01 High Performance PC Input/Output (I/O) Board
  • YASKAWA JACP-317800 servo drive
  • YASKAWA CP-317/AI-01 Field Control Station Module
  • YASKAWA SGDS-08A01A High Performance Servo Motor
  • YASKAWA PS-01 Industrial Programmable Logic Controller
  • YASKAWA MB-01 Integrated Ethernet PLC Module
  • YASKAWA JZNC-XU01B servo drive and amplifier
  • YASKAWA JZNC-MRK12-1E Control Machine
  • YASKAWA JRMSP-P8101 power supply
  • YASKAWA JRMSI-B1026 Relay
  • YASKAWA JEPMC-MC001 PLC module
  • YASKAWA JEPMC-CP210T2V High Performance PLC Module
  • YASKAWA JANCD-PC51 control board
  • YASKAWA JANCD-MSV01B circuit board
  • YASKAWA JANCD-MCP02B-1 Yaskawa Circuit Board
  • YASKAWA JANCD-MCP01 Multi Communication Interface Module
  • YASKAWA JANCD-JSP04-1 CNC board
  • YASKAWA JANCD-CP50B Industrial Control Module
  • YASKAWA JAMSI-B1031 Industrial Control Module
  • YASKAWA JAMSC-C8160 Industrial Control Module
  • YASKAWA JAMSC-C8120 Industrial Control Module
  • YASKAWA JAMSC-B1071 Control Module
  • YASKAWA JAMSC-B1070 Industrial Control Module
  • YASAWA DI-01 Digital Indicator Controller
  • YASKAWA CPS-18F8 module
  • YASKAWA AI-01 Analog Input Module
  • YASKAWA SGMAH-02AAA21 high-precision servo motor module
  • YASKAWA NPSO-0503L high-precision servo drive module
  • YASKAWA LASC-100SUB high-precision motion control module
  • YASKAWA JUSP-WS15AB servo control unit
  • YASKAWA JANCD-MIF01 Multi Interface Communication Card
  • YASKAWA JAMSC-B1063 Industrial Control Module
  • YASKAWA JAMSC-B1050 Industrial Control Module
  • Alstom BCSR1 TERMINAL BOARD OF 8 LOGIC OUTPUT SIGNALS
  • Alstom BCEA1 TERMINAL BOARD OF 8 ANALOGUE INPUT SIGNALS
  • Alstom BCEL2 TERMINAL BOARD FOR 12 LOGIC INPUT SIGNALS
  • Alstom E64L1- LOGIC INFORMATION ACQUISITION BOARD
  • Alstom FRTN2 BOARD OF DIGITAL INDICATION OF VOLTAGE REGULATION
  • Alstom ARTN1 DIGITAL INDICATION BOARD FOR VOLTAGE REGULATION
  • Alstom MCRI1 MODULE BOARD FOR SETTING SETTINGS AND CURRENT REGULATION
  • Alstom CPRM1 SINGLE-PHASE POWER REGULATION BOARD
  • Alstom ESVI1 INPUT/OUTPUT BOARD FOR CURRENT AND VOLTAGE SIGNALS
  • Alstom RDSP1 BOARD FOR ADJUSTING DIGITAL SIGNAL PROCESSES
  • Alstom MDEX1 microprocessor control board
  • Alstom IRVI20 - REGULATION INTERFACE BOARD
  • Alstom AMS42 POWER SUPPLY BOARD
  • ABB VACUUM CONTACTOR VSC7 SCO IEC 60470 400A 3POLE 220-250V 50/60Hz
  • ABB DRIVEMONITOR VERSION 4000 DRIVE MODULE RBOX316-ABB-00
  • YASKAWA JACP-317802 AC servo drive
  • YASKAWA JACP-317801 Advanced Process Controller
  • YASKAWA JACP-317120 Power Supply Unit
  • YASKAWA CP-9200SH/SVA servo controller
  • YASKAWA CP-9200SH/CPU Programmable Controller
  • YASKAWA CP-317/DO-01 Digital Output Module
  • YASKAWA CP-317/218IF high-speed communication interface module
  • YASKAWA CP-317/217 IF Communication Interface Module
  • YASKAWA CIMR-M5D2018 High Performance Inverter
  • YASKAWA CACR-HR10BB servo drive
  • YASKAWA 218IF machine controller
  • YOKOGAWA YS1700-100/A06/A31 Programmable Indicator Controller
  • YOKOGAWA KS9-5 * A signal cable
  • YOKOGAWA KS8-5 * A signal cable
  • YOKOGAWA KS2-5 * A DSC signal cable
  • YOKOGAWA PW482-10 power module
  • YOKOGAWA SCP451-11 processor module
  • YOKOGAWA SR1030B62-3MN * 1C High Frequency Signal Processor
  • YOKOGAWA SR1030B62 Analog Input Module
  • YOKOGAWA CP451-10 processor module
  • YOKOGAWA CP451-50 processor module
  • YOKOGAWA AAI143-H50 Analog Input Module
  • YOKOGAWA 22.5 × 17.4 × 10 Compact Industrial Control Module
  • YOKOGAWA AMM42 multiplexer input module
  • YOKOGAWA SDV144-S63 Digital Input Module
  • YOKOGAWA AIP830-111 single player keyboard
  • YOKOGAWA S9361DH-00 Terminal Board Module
  • YOKOGAWA ATK4A-00 S1 KS Cable Interface Adapter
  • YOKOGAWA PW701 power module
  • YOKOGAWA AVR10D-A22010 Duplex V-net Router
  • YOKOGAWA PW441-10 power module
  • YOKOGAWA VI451-10 Communication Interface Module
  • YOKOGAWA VC401-10 Coupling Module
  • YOKOGAWA ALP121 Communication Module
  • YOKOGAWA NFAI841-S00 Analog Input Module
  • YOKOGAWA AIP591 Process Control Module
  • YOKOGAWA AIP578 optical link transceiver
  • YOKOGAWA PW501 power module
  • YOKOGAWA YNT511D fiber optic bus repeater
  • YOKOGAWA AIP171 transceiver control module
  • YOKOGAWA VI702 Vnet/IP Interface Card
  • YOKOGAWA 2302-32-VLE-2 electronic mixer
  • YOKOGAWA ATK4A-00 Cable Interface Adapter
  • YOKOGAWA ALR121-S00 Communication Module
  • YOKOGAWA CP461-50 processor module
  • YOKOGAWA AIP121-S00 Control Module
  • YOKOGAWA UR1800 Recorder
  • YOKOGAWA LC82 * A Industrial Controller
  • YOKOGAWA ANR10D bus node unit
  • YOKOGAWA SDV144-S13 Digital Input Module
  • YOKOGAWA NFAI143-H00 Analog Input Module
  • YOKOGAWA EB501 Bus Interface Module
  • YOKOGAWA CP451-10 Process Control Module
  • YOKOGAWA V0/E1/TCAM/L08 Advanced Process Control Module
  • YOKOGAWA VO/E2/TCDM24/L8 high-precision temperature control module
  • YOKOGAWA 16137-119 high-precision digital input module
  • YOKOGAWA 16114-500 module rack