Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

HIMatrix Safety-Related Controller F35 01 Manual

来源: | 作者:佚名 | 发布时间 :2023-11-16 | 676 次浏览: | Share:

Reaction in the Event of a Fault:

If the device detects a faulty signal on a digital output, the affected module output is set to the safe (de-energized) state using the safety switches.If a device fault occurs, all digital outputs are switched off.In both cases, the devices activates the FAULT LED.The error code allows the user to configure additional fault reactions in the user program.

1. Safety-Related Counters

The controller is equipped with 2 independent counters with inputs that can be configured for 5 V or 24 V level.The required voltage level is determined with the Counter[0x].5/24V Mode system parameter.Input A is the counter input, B is the count direction input and input Z (zero track) is used to reset.Alternatively, all inputs are 3-bit Gray code inputs (in decoder operation)

The following modes of operation can be implemented:

{1} Counter function 1 (depending on the count direction input signal)

{2} Counter function 2 (irrespective of the count direction input signal)

{3} Decoder operation with attached absolute rotary transducer

Refer to Chapter 3.4.3 for more details on how to configure the counters.The safety-related counter has a 24-bit resolution, the maximum counter reading is 224 – 1(= 16 777 215).

2. Reaction in the Event of a Fault

If the device detects a fault in the counter section, a status bit is set for evaluation in the user program.The device activates the FAULT LED.In addition to the status bit, the user program must also consider the corresponding error code.The error code allows the user to configure additional fault reactions in the user program.The resolution of the voltage and the current values depends on the parameter set in the properties of the controller.In SILworX, the FS 1000 / FS 2000 system parameter can be selected in the Module tab(Module of the digital and analog inputs MI 24/8). Depending on the selection, different resolutions result in the user program for the AI[xx].Value system parameter, see Chapter 4.3.4.1.To monitor the AI[xx].Value parameter, evaluate the corresponding AI[xx].Error Code parameter in the user program.In ELOP II Factory, set the 1000 resolution (MI 24/8 FS 1000) or 2000 resolution (MI 24/8 FS2000) in the Type field (menu: Properties, module: Analog Inputs). Depending on the selection, different resolutions result in the user program for the AI[xx].Value system parameter,see Chapter 4.4.4.To monitor the AI[xx].Value parameter, evaluate the corresponding AI[xx].Error Code parameter in the user program.The input signals are evaluated in accordance with the de-energized to trip principle.Only shielded cables with a length of a maximum of 300 m must be connected to the analog inputs. Each analog input must be connected to a twisted pair of wires. The shielding must be connected to the controller and the sensor housing and earthed on one end to the controller side to form a Faraday cage.Unused analog inputs must be short-circuited.If an open-circuit occurs during voltage measurement (the line is not monitored), any input signals are processed on the high-resistance inputs. The value resulting from this fluctuating

input voltage is not reliable. Therefore with voltage inputs, the channels must be terminated by a 10 k resistor. The internal resistance of the source must be taken into account.For a current measurement with the shunt connected in parallel, the 10 k resistor is not required.The analog inputs have a common ground L-.The analog inputs are designed to retain the metrological accuracy for 10 years. A proof testmust be performed every 10 years


System LEDs

System LEDs with CPU OS V8 and Higher

While the system is being booted, all LEDs are lit simultaneously

Connections for Fieldbus Communication

The three 9-pole D-sub connectors are located on the front plate of the housing.The fieldbus interfaces FB1 and FB2 can be equipped with fieldbus submodules. The fieldbus

submodules are optional and must be mounted by the manufacturer. The available fieldbus submodules are described in the SILworX communication manual (HI 801 101 E).

The fieldbus interfaces are not operational without fieldbus submodule.Factory-made, the fieldbus interface FB3 is equipped with RS485 for Modbus (master or slave)

or ComUserTask.

Mounting the F35 in Zone 2(EC Directive 94/9/EC, ATEX)The controller is suitable for mounting in zone 2. Refer to the corresponding declaration of conformity available on the HIMA website.When mounting the device, observe the special conditions specified in the following section.

Specific Conditions X

1. Mount the HIMatrix F35 controller in an enclosure that meets the EN 60079-15 requirements and achieves a type of protection of at least IP54, in accordance with EN 60529. Provide the enclosure with the following label:Work is only permitted in the de-energized state

Exception:

If a potentially explosive atmosphere has been precluded, work can also performed when the controller is under voltage.

2. The enclosure in use must be able to safely dissipate the generated heat. Depending on the output load and supply voltage, the HIMatrix F35 has a power dissipation ranging between 15 W and 29 W.

3. Protect the HIMatrix F35 with a 10 A time-lag fuse.

The 24 VDC power must come from a power supply unit with safe isolation. Use power supply units of type PELV or SELV only.

4. Applicable standards:

VDE 0170/0171 Part 16, DIN EN 60079-15: 2004-5

VDE 0165 Part 1, DIN EN 60079-14: 1998-08

Pay particular attention to the following sections:

DIN EN 60079-15:

Chapter 5 Design

Chapter 6 Terminals and cabling

Chapter 7 Air and creeping distances

Chapter 14 Connectors

DIN EN 60079-14:

Chapter 5.2.3 Equipment for use in zone 2

Chapter 9.3 Cabling for zones 1 and 2

Chapter 12.2 Equipment for zones 1 and 2

Configuration with SILworX

In the Hardware Editor, the controller is represented like a base plate equipped with the

following modules:

{1} Processor module (CPU)

{2} Communication module (COM)

{3} Output module (DO 8)

{4} Counter module (HSC 2)

{5} Input module (MI 24/8)

Double-click the module to open the Detail View with the corresponding tabs. The tabs are used to assign the global variables configured in the user program to the system variables of the corresponding module.


3. Parameters and Error Codes for the Inputs and Outputs

The following tables specify the system parameters that can be read and set for the inputs and outputs, including the corresponding error codes.In the user program, the error codes can be read using the variables assigned within the logic.The error codes can also be displayed in SILworX.Configuration with ELOP II Factory

3.1 Configuring the Inputs and Outputs

The signals previously defined in the Signal Editor (Hardware Management) are assigned to the individual channels (inputs and outputs) using ELOP II Factory. Refer to the system manual for compact systems or the online help for more details.The following chapter describes the system signals used for assigning signals in the controller.

3.2 Signals and Error Codes for the Inputs and Outputs

The following tables specify the system signals that can be read and set for the inputs and outputs, including the corresponding error codes.In the user program, the error codes can be read using the signals assigned within the logic.The error codes can also be displayed in ELOP II Factory.

Connection Variants:

This chapter describes the permissible wiring of the controller in safety-related applications.Only the connection variants specified here are permitted for SIL 3 applications.

3.3 Wired Mechanical Contacts on Analog Inputs

Wired mechanical contacts are connected to the analog inputs using the Z 7308 shunt adapter,see Figure 11. The shunt adapter protects the analog inputs against overvoltage and shortcircuits from the field zone.Each analog input has a supply output that is fed by a common AI power source. The supply voltage is between 26.7 V and 27.3 V.The supply of the analog inputs must be monitored. To do so, the used supply outputs (S1...S8)must be connected in parallel and attached to a digital input. The evaluation of the digital input is analog and must be configured in the programming tool accordingly.

Maintenance

No maintenance measures are required during normal operation.If a failure occurs, the defective module or device must be replaced with a module or device of the same type or with a replacement model approved by HIMA.Only the manufacturer is authorized to repair the device/module.

4. Faults

Refer to Chapter 3.1.1.1, for more information on the fault reaction of digital inputs.

Refer to Chapter 3.1.2.1, for more information on the fault reaction of digital outputs.

Refer to Chapter 3.1.3.1, for more information on the fault reaction of counters.

Refer to Chapter 3.1.4.2, for more information on the fault reaction of analog inputs.

If the test harnesses detect safety-critical faults, the module enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the de-energized, safe state. The evaluation of diagnostics provides information on the fault cause.

4.1 Maintenance Measures

The following measures are required for the device:

{1} Loading the operating system, if a new version is required

{2} Executing the proof test

4.2 Loading the Operating System

HIMA is continuously improving the operating system of the devices. HIMA recommends to use system downtimes to load a current version of the operating system into the devices.Refer to the release list to check the consequences of the new operation system version on the system!The operating system is loaded using the programming tool.Prior to loading the operating system, the device must be in STOP (displayed in the programming tool). Otherwise, stop the device.For more information, refer to the programming tool documentation.

4.3 Proof Test

HIMatrix devices and modules must be subjected to a proof test in intervals of 10 years. Formore information, refer to the safety anual (HI 800 023 E).


  • RELIANCE 0-57170 Industrial Drive System Component
  • Reliance Electric S-D4030-A Remote I/O Head Module
  • RELIANCE 0-57406-E Industrial Control Module
  • RELIANCE 57401-2 Control Interface Module
  • RELIANCE 57421 Electrical Control Component
  • Reliance Electric 57401 Remote I/O Head Module
  • RELIANCE S-D4007 Industrial Control Module
  • ABB SACO16D1-AA Digital Annunciator Unit
  • RELIANCE 803.65.00 Control Board for Industrial Systems
  • Reliance Electric 57C404C AutoMax Processor Module
  • RELIANCE 0-57C411-2 Industrial Control Module
  • RELIANCE 0-57C408-B Heavy-Duty Industrial AC Motor
  • Reliance Electric 0-57C406-E AutoMax Power Supply Module
  • RELIANCE 0-57C407-4H Industrial Control Module
  • RELIANCE 0-57C405-C Industrial Duty AC Electric Motor
  • Reliance Electric 0-57C404-1E AutoMax Processor Module
  • RELIANCE 0-57C402-C Drive Control Module
  • RELIANCE 0-57C400-A High-Performance Industrial AC Motor
  • Reliance Electric 0-51378-25 Digital Interface Board
  • RELIANCE S-D4041B Drive Control Module
  • RELIANCE INSPECTOR VCIB-06 Vibration Calibration Instrument
  • Reliance Electric S-D4043C Remote I/O Head Module
  • RELIANCE S-D4012 Drive Control Module
  • Reliance Electric 805401-5R Printed Circuit Board
  • RELIANCE ELECTRIC 0-60029-1 Drive Control Module
  • REXROTH VT-HNC100-1-23/W-08-C-0 Digital Axis Control
  • REXROTH VT-HNC100-4-3X/P-I-00/G04 Digital Axis Controller
  • REXRTOH VEP40.3CEN-256NN-MAD-128-NN-FW Industrial Embedded PC
  • Rexroth 0608820116 ErgoSpin CC-AS300-070 Tightening Tool
  • REXROTH MHD093C-058-PG1-AA Synchronous Servo Motor
  • REXRTOH VT-HNC100-1-22/W-08-C-0 Industrial Touch Monitor
  • Rexroth MSK060C-0600-NN-S1-UP1-NNNN IndraDyn S Servo Motor
  • REXRTOH VT3024 Industrial Monitor
  • Rexroth MHD041B-144-PG1-UN Synchronous Servo Motor
  • Rexroth VT-HNC100-1-23/W-08-S-0 Digital Axis Control
  • Rexroth VT-HNC100-1-23/M-08-P-0 Controller
  • REXRTOH VT-HNC100-1-22/W-08-0-0 | Hydraulic Valve Block Assembly
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth MHD095C-058-NG1-RN Hydraulic Motor
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • REXRTOH BTV04.2GN-FW | Bus Terminal Valve with PROFINET
  • Rexroth BGR DKC02.3-LK SCK02/01 ECODRIVE3 Control Assembly
  • Rexroth MKD025B-144-KG1-UN Servo Motor
  • REXRTOH R901325866+R900775346+R901273425A | Drive System Component Set
  • Rexroth CSH01.1C-SE-EN2-NNN-NNN-NN-S-XP-FW Drive Controller
  • REXRTOH DDS2.1W200-D | Digital Servo Drive
  • Rexroth VT3002-2X/48F Card Holder for Proportional Amplifiers
  • Rexroth VDP40.2BIN-G4-PS-NN Proportional Valve
  • REXRTOH MSK070D-0450-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK070C-0150-NN-S1-UG0-NNNN IndraDyn S Servo Motor
  • Rexroth MSK050C-0600-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK030C-0900-NN-M1-UP1-NSNN Servo Motor
  • Rexroth TV 3000HT PUMF Hydraulic Pump Module
  • REXRTOH R911259395 | Drive System Control Module
  • Rexroth VT-VSPA1-1-11 Proportional Amplifier Card
  • Rexroth VT3006S35R1 Proportional Valve Module
  • REXRTOH VT3006S34R5 Hydraulic Valve | Directional Control Valve
  • Rexroth VT3000S34-R5 Proportional Amplifier Card
  • Rexroth SL36 Servo Motor Controller
  • REXRTOH SE200 0608830123 | Inductive Proximity Sensor
  • Rexroth RAC 2.2-200-460-A00-W1 Main Spindle Drive Controller
  • Rexroth PSM01.1-FW Power Supply Module
  • REXRTOH PIC-6115 | Programmable Industrial Controller
  • Rexroth MDD112D-N030-N2M-130GA0 Digital AC Servo Motor
  • Rexroth HDS03.2-W075N Drive Controller Module
  • REXRTOH DKC03.3-040-7-FW Servo Drive | Digital Motion Controller
  • Rexroth DKC02.3-200-7-FW ECODRIVE3 Servo Drive Controller
  • Rexroth CSB01.1N-AN-ENS Control System Module
  • REXRTOH 0608830222 | Genuine Automation Component
  • Rexroth 0608830174 ErgoSpin Tightening System Control Module
  • Rexroth 0608820103 Industrial Hydraulic Control Component
  • REXRTOH 0608820069 Industrial Automation Component
  • Rexroth 0608800048 ErgoSpin Tightening System Control Module
  • Rexroth 0608801006 Industrial Hydraulic Control Component
  • REXRTOH SYHNC100-NIB-24-P-D-E23-A012 Encoder | Synchronous Serial Interface
  • Rexroth 0608720040 ErgoSpin Tightening System Control Module
  • REXRTOH SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • ABB CP555 1SBP260179R1001 HMI Operator Terminal
  • HIMA K9212 Fan Assembly | Safety System Cooling Unit
  • WATLOW CLS208 Digital Temperature Controller
  • Watlow CLS2163C1-110200000-CLS204204-C10000AA-CLS208208-C10000AE Multi-Loop PID Controllers
  • WATLOW PPC-TB50 Power Controller
  • WATLOW PPC-TB50 30280-00 Temperature Controller
  • Watlow NLS300-CIM316 Communication Interface Module
  • WATLOW MLS300 Limit Controller
  • WATLOW CAS 16CLS/CAS Temperature Controller
  • Watlow CAS200 CLS216 16-Loop Thermal Controller Module
  • WATLOW CLS208 C10000CP Power Controller
  • WATLOW ANAFAZE LLS200212 CLS208 Temperature Control System
  • Watlow ANAFZE PPC-TB50 CLS208 Multi-Loop Controller
  • WATLOW ANAFZE 997D-11CC-JURG Power Controller
  • WATLOW ANAFAZE PPC-TB50 Temperature Controller
  • ABB SUE3000 1VCF750090R0804 High-Speed Transfer Device
  • ABB TET106 11355-0-6050000 Temperature Module
  • ABB PPD512 A10-15000 Power Panel Display
  • ABB PPD113B01 3BHE023784R1023 AC 800PEC Control Module
  • ABB PFEA113-65 Tension Controller 3BSE050092R65
  • ABB PFEA112-20 3BSE050091R20 Fieldbus Adapter Module
  • ABB PFEA111-65 3BSE050091R65 Tension Electronics PFEA111
  • ABB PFEA111-65 Tension Controller 3BSE050090R65
  • ABB PDD500A101 Operator Display Panel | Industrial HMI Interface
  • ABB KP2500 Process Control System Controller
  • ABB CP405 A0 Operator Panel 1SAP500405R0001
  • ABB AX411/50001 Digital Input Module
  • ABB 500TRM02 1MRB150011R1 Procontrol P13 Bus Terminal Module
  • ABB 500TTM02 Temperature Module 1MB150021R0116
  • ABB 500TRM02 1MRB150011R0001 Terminating Resistor Module
  • ABB 500SCM01 1MRE450004R1 Control Module
  • ABB 500SCM01 1MRB200059/C 1MRB150044R0001 Station Control Module
  • ABB 500SCM01 1MRB150004R00011MRB200059/C Control Module
  • ABB 500PSM03 1MRB 150038 R1 894-030375D 136-011100H Power System Module
  • ABB 500PSM03 1MRB150038 R1 894-030375D 136-011100H Power Supply Module
  • ABB 500PSM02 1MRB150015R1 AD-272.100.20-01 AZ:C Power Supply Module
  • ABB 500PB101 1MRB178009R00011MRB200064/C Power Supply Module
  • ABB 500MTM02 1MRK001967-AA 1HDF 930512 X010 Module
  • ABB 500MTM02 1MRB150020R1102 1HDF 930512 X010 Motor Module
  • ABB 500MTM02 1MRB150020R0712 Touch Module
  • ABB 500MBA02 1MRB150003R0003 1MRB200053/M Bus Coupling Module
  • ABB 500MBA01 1MRB150003R00021MRB200053/L Motor Control Module
  • ABB 500MBA02 1MRB150003R000/B Analog Output Module
  • ABB 500CSP04 HE401314/0002 1MRB150051R2 Control Processor Module
  • ABB 500CPU05 1MRB150081R1/E CPU Module
  • ABB 500CPU03 1HDF700003R5122 Central Processing Unit
  • ABB 500CMP04 HE401314/0001 1MRB150051R1 Central Processor Module
  • ABB 500CIM05 1MRB150077R1/B PROFIBUS DP Interface Module
  • ABB 500BI001 1MRB150005R0001 1MRB200060/E Binary Input Module
  • ABB 500BI001 1MRB150005R1/J Procontrol P13 Bus Interface Module