Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Eight landmark achievements in the field of life sciences

来源: | 作者:佚名 | 发布时间 :2023-12-07 | 452 次浏览: | Share:


Synthetic biology research

After China's first synthetic bovine insulin in the world in 1965 (won the first prize of the 1982 National Natural Science Award), in November 1981, the joint research team composed of Shanghai Biochemical Institute, Shanghai Cell Institute, Shanghai Organic Institute, Biophysics Institute and related units outside the institute lasted 13 years. Yeast alanine transfer ribonucleic acid complete molecule containing 76 nucleotides was synthesized for the first time in the world.

This achievement won the first prize of the National Natural Science Award in 1987, which is of great significance to reveal the origin of life and the role of nucleic acids in living organisms, and lays a theoretical foundation for further understanding of genetic and other life phenomena, and the development and application of a variety of nucleic acid drugs, marking China's entry into the ranks of the world's advanced in this field.

In August 2018, the Innovation Center of Excellence in Molecular Plant Science used synthetic biology "engineering" methods and efficient enabling technology to use single-cell eukaryotic Saccharomyces cerevisiae (naturally containing 16 linear chromosomes) as research materials to artificially create eukaryotic cells containing only a single chromosome for the first time in the world.

After synthetic bovine insulin and yeast alanine transfer ribonucleic acid, Chinese scientists have once again used synthetic science strategies to answer major fundamental questions in the field of life science, which will deepen human understanding of the nature of life.

Study on nonhuman primate model and brain connectivity map

The Center of Excellence for Brain Science and Intelligent Technology has made a series of important original achievements in the research of non-human primate models and brain connectivity maps.

At the end of 2017, the world took the lead in overcoming the worldwide problem of non-human primate somatic cell nuclear cloning, and the world's first individual cell cloned monkey "Zhong Zhong" was born on November 27, and the second cloned monkey "Hua Hua" was born on December 5.

This is another major breakthrough in the field of cloning biotechnology after the British sheep "Dolly" was cloned in 1997, which will strongly promote basic research in life sciences and translational medicine research, and bring bright prospects for exploring the mechanism of many complex diseases, establishing effective diagnosis and treatment and intervention methods, and creating new drugs.

In 2016, the Innovation Center of Excellence established the world's first non-human primate model carrying human autism genes, the cynomorphic monkey model, and constructed a behavioral analysis paradigm of non-human primate autism, providing an important window for observing the neuroscience mechanism of autism. It lays an important foundation for the in-depth study of the pathology of autism and the exploration of possible therapeutic intervention methods.

In 2016, the Center for Excellence in Innovation successfully drew a more accurate map of human brain functional divisions, namely the human brain network group map, breaking through the bottleneck of traditional brain mapping for more than 100 years, proposed the idea of "using brain connectivity information to map the brain", and established the living whole brain connectivity map on a macro scale for the first time. It provides an important foundation for the source innovation of brain science and brain disease research.

Genomic research

In July 1999, led by the Institute of Genetic Development, China participated in the International Human Genome Project, becoming the sixth participating country and the only developing country after the United States, Britain, France, Germany and Japan.

In April 2000, China completed the 1% genome sequence framework of the International Human Genome Project ahead of schedule. The 30 million bases on the short arm of chromosome 3 were determined. In February 2001, Nature published a research paper on the framework diagram of the Human Genome Project. In December 2002, Nature published a research paper on the fine map of the genome sequence of long-grain rice, and the complete map with a coverage rate of 99.99% was drawn. It has laid a foundation for China's biological resources genome research and participation in international biological industry competition.

In 2000, the Institute of Genetic Development cooperated in the Chinese Super hybrid rice Genome Project. In October 2001, it was the first to complete the drawing of the framework map of rice (indica rice) gene work, and released the database for free.

In December 2002, the world's first fine map of the whole genome of crops, indica rice genome sequence, was completed, and the world's first gene chip covering the whole genome of rice was successfully developed, laying a foundation for maintaining China's international leading position in the field of hybrid rice breeding. He won the Outstanding Scientific and Technological Achievement Award of the Chinese Academy of Sciences in 2003.

In 2014, the Institute of Animal Sciences successfully deciphered the whole genome sequence of migratory locust, which is the largest animal genome deciphered so far, revealing the regulation of migratory locust swarm behavior and the genetic and epigenetic regulation mechanisms of phenotypic plasticity. At the same time, a series of breakthroughs have been made around the difficult problems such as the mechanism of population outbreak disaster. Won the 2017 Outstanding Scientific and Technological Achievement Award of the Chinese Academy of Sciences.

Flora of China and biodiversity research

In 2004, Flora of China, an encyclopedia of higher plant resources in China, was published.

Led by the Chinese Academy of Sciences (Institute of Botany, South China Botanical Garden, Kunming Institute of Botany, etc.), the book took 41 years (1918-1959) of preparation by four generations of plant taxonomists in China, 45 years (1959-2004) of compilation and research, 312 authors and 164 cartographers from more than 80 units in China to complete.

The book has 80 volumes and 126 volumes, with a total of more than 50 million words, recording 301 families, 3,408 genera, 31,142 species of vascular plants in China, including 9,080 plates, which is the largest and most abundant plant annals published in the world.

Flora of China is a pioneering, innovative, systematic and basic project in the field of botany. It is a landmark achievement of Chinese botany research in the past half century. It has great academic value, promotes the development of related disciplines of botany and biology in China, and provides an important scientific basis for the research of terrestrial ecosystem and the development and utilization of plant resources. It has made a significant contribution to the sustainable development of biodiversity in China and around the world, and has had a far-reaching impact.

Before that, the "Chinese Higher Plant Atlas" and "Chinese Higher Plant Family and Genus Search Table" led by the Institute of Botany won the first prize of the 1987 State Natural Science Award; The research results of the Institute on the systematic arrangement and historical origin of pteridophytes in China won the first prize of the 1993 State Natural Science Award.

In terms of biodiversity survey, collection, preservation, protection and utilization, CAS has completed the construction of basic resource platforms such as botanical garden system, herbarium system, biogenetic resource bank and biodiversity monitoring and research network through the construction of strategic biological resources network, and established a relatively complete germplasm resource database and information sharing management system.

Kunming Institute of Botany led the establishment of the Southwest China Wild Species Germplasm Bank in 2009, collecting nearly 80,000 rare and endangered species, endemic species, and wild plant seeds of important economic and scientific value, and its germplasm resource conservation capacity has reached the international leading level. China Botanic Garden Alliance was initiated to implement the "Full coverage plan of Native plants", which plays an important support for biodiversity protection in China.

The establishment of the strategic biological resources Network of the Chinese Academy of Sciences and the scientific research carried out on the basis of it are of great strategic significance to promote the conservation of biodiversity in China, the development of biotechnology industry and the response to international biological resources competition.

Paleontological research

The Nanjing Institute of Paleontology discovered the Chengjiang zoological Group in 1984. After 17 years of large-scale collection and comprehensive research of more than 30,000 fossils, a series of world-renowned results have been achieved, which for the first time vividly reproduced the face of the Marine animal world 530 million years ago and provided a scientific basis for revealing the mystery of the "Cambrian explosion". The achievement was hailed as "one of the most amazing scientific discoveries of the 20th century" and won the first prize of the National Natural Science Award in 2003.

"Golden nail" is the international standard of global chronostratigraphic division and correlation. As of July 2018, among the more than 60 "golden nails" identified in the world, there are 11 in China, ranking first in the world, of which 7 (Changxing stage, Pai Bi stage, Wujiaping stage, Hernande Stage, Guzhang Stage, Jiangshan Stage and Wuliang stage) are completed by Nanjing Paleontology Institute.

Based on many years of continuous large-scale field investigations and excavations, the Institute of Palaeontology has carried out research on the vertebrate fauna in Jehe, western Liaoning, and made a series of important discoveries and original achievements, which have enriched human understanding of the Early Cretaceous terrestrial ecosystem, and are of great significance in the study of the origin and systematic evolution of many vertebrate groups.

He won the Outstanding Scientific and Technological Achievement Award of the Chinese Academy of Sciences in 2003, and was selected as one of the top Ten scientific and technological discoveries in the world in 2007 by Time Magazine and the top ten scientific breakthroughs in 2014 by Science Magazine.

Through the discovery and study of the earliest fossils of modern humans in East Asia 80,000 to 120,000 years ago, the Institute of Palaeontology denied part of the "African origin theory" of modern humans, and proposed a new hypothesis of the emergence and diffusion of modern humans in East Asia, providing important fossil evidence for the study of human evolution in East Asia, and pushing the study of ancient human evolution in China to the international frontier level. The related achievements were selected as Nature's top ten scientific Events in 2014.

Stem cell and regenerative medicine research

In 2009, the cooperative method of animals for the first time used induced pluripotent stem cells (iPS cells), through tetraploid blastocyst injection to survive and have the ability to reproduce mice, the first time in the world to prove the totipotency of iPS cells, for further research iPS technology in the field of stem cells, developmental biology and regenerative medicine to provide a technical platform. He won the Outstanding Scientific and Technological Achievement Award of the Chinese Academy of Sciences in 2013.

Since then, the institute has also taken the lead in establishing mammalian solitary male and parthenogenetic haploid embryonic stem cell lines, and has formed an internationally advantageous technical system for functional gene screening and research. It is found that parthenogenetic haploid stem cells can replace sperm after modification of genomic imprinting, and a new method of "homosexual reproduction" has been established.

In 2012, the Guangzhou Institute of Biology used urine epithelial cells to induce the generation of neural stem cells, providing a new way for the treatment of neurological diseases.

In 2016, the Center of Excellence in Molecular and Cellular Science successfully used transdifferentiation technology to construct liver cells, developed a new type of bioartificial liver, treated and saved more than 10 cases of liver failure patients, and achieved industrial transformation.

Since 2015, the Institute of Genetic Development has used nerve regeneration collagen scaffolds combined with cell transplantation to treat spinal cord injury and achieved good results. From 2013 to 2018, the use of stem cells combined with collagen scaffolds to treat endometrial injury and premature ovarian failure was successful, and it is expected to become an effective therapy for female reproductive system diseases.

New drug development

Shanghai Pharmaceutical Institute innovatively developed salvia polyphenolate and its powder injection, which obtained the new drug certificate and production approval in May 2005, and was rated as the most competitive pharmaceutical variety in the market by the Chinese pharmaceutical industry.

Since it was put into operation in 2006, the cumulative sales revenue has exceeded 20 billion yuan, benefiting more than 15 million patients, and has a demonstration role in the modernization of Chinese traditional medicine. He won the Outstanding Scientific and Technological Achievement Award of the Chinese Academy of Sciences in 2013.

In 2009, Shanghai Pharmaceutical Institute spent more than 10 years to independently develop China's first national class fluoroquinolone antibacterial drug with independent intellectual property rights, antofloxacin hydrochloride, which significantly improved the antibacterial activity and metabolic properties, breaking the situation of China's long-term reliance on generic drugs.

After more than 20 years of efforts, on July 17, 2018, the mannooligosaccharic acid (GV-971) jointly developed by Shanghai Pharmaceutical Institute completed the phase III clinical trial, and the cure effect was obvious, marking a major breakthrough in China's new drug for the treatment of Alzheimer's disease with independent intellectual property rights.

The novel mode of action and unique multi-target action characteristics of GV-971 have subverted the traditional understanding of the pathogenesis of Alzheimer's disease by the world medical community on the drug antitofloxacin hydrochloride Diaoxuenkang capsule mannooligosaccharide (GV-971) capsule tumor immune targeting small molecule inhibitor, and opened up a new path for the development of Alzheimer's disease drugs.

In 2014, Shanghai Institute of Organics developed tumor immune targeting small molecule inhibitor (IDO) - indoleamine 2, 3-dioxygenase, which can be used to treat prostate cancer, pancreatic cancer, breast cancer, stomach cancer and other tumor diseases. In September 2017, the license was transferred to domestic biopharmaceutical enterprises for $457 million.

Studies on distant hybridization and molecular breeding

After more than 50 years of unremitting efforts, the Institute of Genetics and Development has cultivated a new wheat variety of "Small Yan" series through systematic remote hybridization research, which has opened up a new way for wheat chromosome engineering breeding.

Among them, "Xiaoyan No. 6" not only has a large popularization area and a long time, but also is one of the most important backbone parents of wheat breeding in China, and more than 80 high-yield and high-quality wheat varieties have been derived. In 2006, the institute passed the wheat variety "Konong 199" approved by the state, becoming one of the main varieties in the Huanghuai wheat area.

After more than 10 years of research, the institute has comprehensively applied genomics, computational biology, systems biology, synthetic biology and other means to create a new generation of rice super variety cultivation system solutions and breeding new technologies.

The molecular mechanisms of cold tolerance, heterosis, broad-spectrum disease resistance and yield balance of rice were analyzed theoretically. New rice module varieties, such as "Zhongke 804", "Zhongke 902" and "Jiayou Zhongke" series, adapted to the Northeast rice area and the middle and lower reaches of the Yangtze River rice area, have been cultivated to realize the coordinated improvement of rice with high quality, high yield and high resistance.

This achievement marks the initial establishment of a new system of molecular module breeding technology in China, which is in the forefront of modern breeding theory research and the cultivation of a new generation of design varieties, and is the third major breakthrough after the agricultural "green revolution" and hybrid rice. He won the 2013 Outstanding Scientific and Technological Achievement Award of the Chinese Academy of Sciences and the first prize of the 2017 National Natural Science Award.


  • GE HYDRAN 201Ti Single Channel Gas Monitoring Transmitter
  • GE Hydran M2-X Transformer Online Monitoring Equipment
  • GE Hydran M2 Transformer Monitoring System
  • Kollmorgen Seidel 65WKS-CE310/6PB - Servo Drive Control
  • Kollmorgen U9M4T - Servodisc DC Motor, With Harmonic Drive Transmission
  • KOLLMORGEN TT-2952-1010-B - INLAND BRUSH SERVO MOTOR WITH TACH
  • ONE VF-RA2474N-5/10/12/15 - Servo Drive Power Cable
  • Kollmorgen S30601-NA - Servostar 346 + EtherCat
  • Kollmorgen HDIL100P1 - Direct Drive Linear Hall Effect Assembly
  • Kollmorgen TT-4239-1010-AA - DC Servo Motor 875 RPM
  • PMI Kollmorgen 00-00907-999 - ServoDisc DC Motor 0.5" Diameter Shaft
  • INLAND KOLLMORGEN TT-2952-1010-B - MOTOR (USES RESOLVER)
  • KOLLMORGEN CTI-187-2 - BRUSHLESS MOTOR DANAHER MOTION
  • Kollmorgen 12-0857 - Lead Screw Electric Cylinder without Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • kollmorgen 6sm, 10m - Cable
  • KOLLMORGEN ME2-207-C-94-250 - GOLDLINE SERVOMOTOR-ENCODER COMMUTATED
  • Kollmorgen MT308A1-R1C1 - GoldLine Motor
  • Kollmorgen 73 & 54 cm Travel - Ironless Linear Motors on THK Rail
  • Kollmorgen AKM53H-ACCNR-00 - Servo Motor
  • Kollmorgen PA5000 - Power Supply
  • KOLLMORGEN D082M-12-1310 - GOLDLINE DDR DIRECT DRIVE ROTARY MOTOR 230Vrms 300 RPM
  • Kollmorgen RBEH-01210-A14 - Brushless Motor, Heidenhain D-83301
  • KOLLMORGEN Servotronix PRD-CC18551H-11 - Servo Board
  • Kollmorgen DH083M-13-1310 - Ho Direct Drive Rotary. Max Speed: 400/500 RPM
  • KOLLMORGEN BMHR-4.8XX - INLAND MOTOR
  • Kollmorgen Seidel 84421 - Motor Cable 20 Metre 6SM 27/37 AKM DBL Engines
  • Kollmorgen AKD1207-NBCC-0000 - Drive
  • HP Indigo / Kollmorgen VLM32H-ALNR-00 - Motor
  • SUPERIOR ELECTRIC / KOLLMORGEN GM05009005 - POWERSTAT 50 AMP VARIAC w/ PMI MOTOR
  • Kollmorgen CM12A1-015-033-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • Kollmorgen U9M2 - DC Motor
  • Kollmorgen AKM11C-ANMN2-00 - 3-Phase PM Servo Motor 110W
  • Kollmorgen 60-023168-000 - MOTOR GEARBOX ASSEMBLY SERVODISC DC NO REAR SHAFT
  • Kollmorgen AS10300 - servo drive servo star Cincinnati
  • Kollmorgen AKM23D-EFC2C-00 - Servo Motor AKD Drive
  • KOLLMORGEN E33HRFB-LNK-NS-01 - STEPPER MOTOR 2.7AMP 251W 1500RPM 170V
  • Kollmorgen AKM21G-ENM2DB00 - Servomotor
  • KOLLMORGEN SERVO STAR 620-AS - 230-480V 20A Servo Drive
  • Kollmorgen CFE0A1-002-006-00 - Encoder Cable 6.00m
  • KOLLMORGEN AKM21C-ANM2DBOO - PM SERVOMOTOR
  • Kollmorgen 03200-2G205A - ServoStar Servo Drive
  • Kollmorgen CR10251 - SERVOSTAR CD AC Servo Driver
  • Kollmorgen VF-DA0474N-03-0 - 10 Ft Feedback Cable
  • KOLLMORGEN AKM21S-ANMNR-03 - Servo Motor
  • Danaher Motion Kollmorgen S403AM-SE - Servostar 443M-S Servo Drive
  • Kollmorgen Seidel digifas 7204 - Servo Amplifier Digital
  • Kollmorgen Industrial Drive B-406-B-A1-B3 - Goldline Brushless Servomotor
  • Danaher Motion S20630-CNS - Servo Kollmorgen S200 Series
  • KOLLMORGEN B-206-A-31-B3 - GOLDLINE BRUSHLESS PM SERVO MOTOR 1400RPM
  • Kollmorgen Seidel SR6-6SMx7 - 4m Cable
  • Cincinnati Milacron Kollmorgen Vickers PSR4/5-250-7500 - Power Supply
  • Kollmorgen AKM 13C-ANCNR-00 - Gripper Handling with Neugart PLE 40 gears
  • Kollmorgen SERVOSTAR 403 A-P - 3a servo drive
  • KOLLMORGEN S6M4H - INDEXER ASSY SERVO MOTOR
  • SERVOMOTOR KOLLMORGEN SEIDEL 6SM 57M-3.000-G-09 - Servo Motor
  • Kollmorgen VP-507BEAN-03 - Valueline AKD 10 Ft Power Cable
  • KOLLMORGEN 28454 - SERVO DRIVE, SERVOSTAR 300 SERVOSTAR 310
  • KOLLMORGEN TT-4205-4017-C - INDUSTRIAL DRIVE DC MOTOR
  • Kollmorgen T150551 - Servostar 343 Control Drive
  • Kollmorgen ICD05030A1C1 - Platinum DDL Direct Drive Linear Motor w/ 30" Rail Way
  • Kollmorgen SERVOSTAR 303 S30361-SE - Servo Drive
  • Kollmorgen 00-00907-002 - ServoDisc DC Motor Varian Semiconductor 3500054
  • Kollmorgen CM12A1-025-005-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • KOLLMORGEN MOTION TECH IL18100A3TRC1 - BRUSHLESS LINEAR MOTOR PLATINUM DDL
  • Kollmorgen SERVOSTAR 406 M-C - Servo Drive FW: 7.36
  • Kollmorgen IC11030A1P1103 - platinum direct drive linear motor
  • W&T 10/100BaseT - Com Server Highspeed 3×RS232/RS422/RS485
  • Kollmorgen S30361-NA - drive brand
  • Kollmorgen Industrial Drives PSR3-208/50-01-003 - Power Supply
  • Kollmorgen RBE-03011-A00 - Brushless Frameless Servo Motor, OD: 5-5/64"/129mm
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Kollmorgen IC44030A2P1 - LINEAR DRIVE MOTOR
  • KOLLMORGEN AKM22E-ANS2R-02 - servo motor + Micron X-TRUE 60
  • Kollmorgen 18442-01B - Pendant (E2)
  • Kollmorgen AKD-P00306-NBEC-0069 - Drive
  • Kollmorgen AKM53H-ACCNR-00 - Servomoteur
  • Kollmorgen AKD-P01207-NACN-0056 - Servo Drive
  • Kollmorgen SERVOSTAR 403a-c - Servo Drive
  • Kollmorgen B-204-B-39-016 - Servo Motor
  • Giddings & Lewis Dahaner Motion Kollmorgen M.1017.3140 R3 - Output Module
  • Kollmorgen KNSG300 - Emergency Light Unit
  • KOLLMORGEN 62-0050 Model T31V-EM-C0 - Servo Motor Shaft Size 3/8" Dia 1-1/4" Long
  • Kollmorgen S30601-NA-ARM9 - SERVOSTAR346 Controller w/o Fan As Is
  • Kollmorgen PMI Motors 00-00903-010 - ServoDisc DC Motor Type U9M4H 1/2" shafts
  • Kollmorgen PMI Motion U12M4 - Servo Disc DC Motor Universal Instruments 11467000
  • Kollmorgen AKM53H-accnr-00 - Servo Motor
  • DANAGER MOTION / KOLLMORGEN ACD4805-W4 - (70A ) Vehicle / Motor Controller
  • Kollmorgen s60300 - SERVOSTAR 603 3 x 230-480v 2kva
  • KOLLMORGEN B-404-C-21 - GOLDLINE BRUSHLESS P.M. SERVOMOTOR
  • Kollmorgen T-5144-A - GE Aviation 739034-01 Direct Drive DC Torque Motor
  • KOLLMORGEN M.1302.8761 - CABLE, POWER
  • Kollmorgen CE03250 - Servostar Servo Drive
  • Kollmorgen K-342 - dual axis automatic autocollimator
  • Kollmorgen TT-4500-1010-B - Inland Motor
  • Kollmorgen S20260-Srs - Synqnets200 Series Servo Drive Forparts
  • Kollmorgen PRDRHP720SND-65 - drive CR06703-R
  • KOLLMORGEN S70362-NANANA - driver
  • Kollmorgen CR06260-000000 - SERVOSTAR CD AC Servo Driver
  • KollMorgen akd-m00306-mcec-D000 - Multi-Axis Master Programmable Drive AKD PDMM
  • KOLLMORGEN S61000 - SERVOSTAR 610 3X230-480V 10A
  • Kollmorgen AKD-P00306-NBCC-0000 - AKD Servo Drive
  • KOLLMORGEN CP306250 - SERVOSTAR SP Servo Drive
  • Kollmorgen MPK411 - controller
  • Kollmorgen S64001 - SERVOSTAR 640, factory-certified
  • Kollmorgen Servotronix Prdr0087006Z-00 - Lvd Servo Drive
  • Kollmorgen AKD-P00306-NAAN-0000 - Servo Drive Controller, 1.2KVA, 240Vac, 3 Phase
  • Kollmorgen MCSS08-3232-001 - MCSS06-3224-001 ServoStar Drives (AS-IS)
  • Kollmorgen CR06250-2D063A - drive
  • YASKAWA SGDP-04APA - SERVOPACK SERVO DRIVE
  • Kollmorgen s62001 - servostar 620-as 14kva 20a ip2o 3x 230-480v
  • Kollmorgen Seidel S60100 - Servostar 601 Servo Drive
  • KOLLMORGEN CR06703-R - HP SERVOSTAR CD CONTROLLER
  • kollmorgen Prdr0052200z-05 - graco inter Servo Component
  • KOLLMORGEN S403AM-SE - drive SERVOSTAR 443M-S
  • YASKAWA SGDP-01APA - SERVOPACK SERVO DRIVE
  • Kollmorgen CE06200-1H348H - SERVOSTAR CD Servo Driver
  • Kollmorgen S71262-NANANA - S700 Servo Amplifier 208Y/120V 480Y/277V
  • Kollmorgen S70302-NANANA-NA - S700 Servo Driver
  • KOLLMORGEN S61401-560 - ATS-SERVOSTAR 614-AS Servo Drive
  • KOLLMORGEN Industrial Drives BDS4A-103J-0001/102A21P - Servo Controller
  • Kollmorgen S71202-NANANA-NA-024 - S700 Servo Driver
  • KOLLMORGEN S70302-NANANA - driver
  • Kollmorgen CR06250 - SERVOSTAR Servo Drive
  • Kollmorgen CE03550 - drive
  • Kollmorgen S71202-NANANA - S700 Servo Driver