Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

History of mainstream wastewater treatment technology

来源: | 作者:佚名 | 发布时间 :2023-12-20 | 848 次浏览: | Share:

According to the growth mode of microorganisms, biological methods can be divided into suspension growth method represented by activated sludge method and adhesion growth method represented by biofilm method. At present, the activated sludge method is the most widely used in urban sewage treatment. However, because the traditional activated sludge operation needs to consume a lot of energy, the operation cost is also high, need to innovate. In order to develop the new technology and process of urban sewage treatment with high efficiency and low consumption, a lot of research has been carried out at home and abroad and some achievements have been made.

1. Biological treatment of microorganisms

Traditional sewage biological treatment technology mainly relies on two types of microorganisms, namely heterotrophic aerobic microorganisms and heterotrophic anaerobic microorganisms. In recent decades, scientists and engineers have worked together to conduct in-depth research on microorganisms in sewage biological treatment, and have made many achievements, such as: the different types and characteristics of bacteria and protozoa in activated sludge and their synergies have been studied, which has promoted the development of AB process; The research on nitrifying and denitrifying bacteria, as well as the research on the characteristics of phosphorus accumulating bacteria, promoted the development of A/O process with nitrogen removal function and A/A/O process with nitrogen and phosphorus removal function. The research on the population and characteristics of anaerobic microorganisms, and the discovery that anaerobic microorganisms have the ability to partially degrade macromolecular synthetic organic matter, promoted the development of anaerobic biological treatment technology and the process of treating wastewater containing refractory organic matter with anaerobic/aerobic tandem process; The research on the screening, culture and immobilization of high efficiency bacteria provides an effective way to further improve the efficiency of sewage biological treatment, especially the treatment of difficult biodegradable organic matter.

2. Biological treatment process

The three major elements in biological treatment are microorganisms, oxygen and nutrients. The reactor is a place where microorganisms inhabit and grow, and is the main equipment for microbial degradation and utilization of pollutants in sewage. An efficient reactor should be able to maintain the maximum microbial quantity and its activity, be able to effectively supply oxygen or isolate oxygen, and make full contact between microorganisms, oxygen and organic matter in sewage with good mass transfer conditions. According to its characteristics, the reactor can be roughly divided into the following categories:

(1) Suspension growth (such as activated sludge method) or attached growth (such as biofilm method);

② Push flow or completely mixed type;

(3) Continuous operation (such as traditional activated sludge method) or intermittent operation (such as SBR method).

1. Activated sludge method

Since the activated sludge process was pioneered by Arden and Lockett in 1914, it has been developed and practiced for 104 years, and has been continuously innovated and improved in terms of oxygen supply mode, operating conditions, and reactor form. The earliest traditional activated sludge method belongs to the push flow aeration tank. Because the substrate concentration near the water inlet of the tank is higher than that at the outlet, the initial design did not take into account the change in oxygen demand, resulting in insufficient oxygen in some parts. In order to improve the shortcomings of uneven oxygen supply, in 1936, the uniform aeration method was changed to gradually reduce aeration along the direction of push flow, most of the oxygen in the substrate removal is quite fast at the inlet end, and the effluent end with internal metabolism and decay as the main reaction only needs a small amount of oxygen, which is the traditional activated sludge method standard form - gradually reduced aerated activated sludge method.

A variant of the activated sludge process (stage aeration) appeared in 1942. Stage aeration method is also called multi-point water intake method, the water is divided into several strands, and then several strands of sewage from different points of the aeration tank into the person, so that the oxygen demand is evenly distributed. The idea of re-aerating the sludge before mixing it with raw water has been further developed. In 1951, the contact stabilized activated sludge method appeared, which is another development form of the traditional activated sludge method. In order to avoid the microbial inadaptation caused by the substrate concentration gradient in the push flow aeration tank, the microbial community was kept in a relatively stable state. By the end of the 1950s, a completely mixed activated sludge method appeared, the advantage of this form is to provide an environment conducive to the growth of bacterial floc, not conducive to the growth of filamentous bacteria, sludge settlement and compactness are very good, but due to changes in the matrix gradient make the system susceptible to toxic substances. In order to overcome the shortcomings of several other forms of improvement (large amounts of sludge must be disposed of, and the operational control requirements of the process are strict), delayed aeration has emerged, which has a fairly high degree of stability due to a complete average residence time of cells, but due to economic constraints, it is only used in small facilities with low sewage concentrations. In addition, pure oxygen aeration method and deep well aeration method have also appeared.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module