Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Consideration on carbon emission and carbon emission reduction of sewage treatment system

来源: | 作者:佚名 | 发布时间 :2023-12-20 | 629 次浏览: | Share:

01 Sewage treatment is an important carbon emission industry

At present, the global carbon emissions are close to 60 billion tons, CO2, CH4, N2O three greenhouse gases accounted for more than 95% of the total carbon emissions, of which CO2 accounted for about 75% of the total emissions, CH4 accounted for about 17% of the total emissions, N2O accounted for about 6% of the total emissions. The emissions of these gases are mainly involved in four major industry categories: energy utilization, agriculture, forestry and animal husbandry, industrial production and waste disposal. Energy use accounts for as much as 70% of total emissions, while waste disposal accounts for about 3.2%. The 3.2% of waste disposal includes garbage treatment, industrial wastewater treatment and domestic sewage treatment, which means water supply and sewage treatment. CO2 emissions mainly come from energy utilization, and CH4 and N2O emissions come from the direct emissions of the other three categories, of which the drainage and sewage treatment industry is the main driver. It is worth mentioning that the global warming potential of CH4 and N2O is much higher than that of CO2, which means that although the emissions of CH4 and N2O in the sewage treatment process are not large, their total carbon emissions are still considerable due to their high global warming potential.

02 Carbon emissions in sewage treatment process

Carbon emissions in the whole sewage treatment process are divided into direct emissions and indirect emissions, of which direct emissions account for more than 60% of the total emissions. In general, there are three ways to directly discharge CO2 in the sewage treatment process: first, the aerobic degradation of organic matter in the influent; Second, the endogenous respiration of microorganisms; The third is the denitrification process [1]. It is worth noting that the IPCC released the latest greenhouse gas guideline "IPCC Guidelines for National Greenhouse Gas Inventories" in 2006, which listed CH4 and N2O as greenhouse gases directly emitted by municipal sewage treatment plants, while direct emissions of CO2 were not included [2]. The reason is that this part of carbon is generally considered to come from plant photosynthesis, which is the organic carbon formed when CO2 is absorbed and fixed in the atmosphere. This part of carbon is biogenic, and it is the CO2 that originally exists in the atmosphere. However, the water in the sewage treatment plant is not only biogenic carbon, and a large number of detergents, cosmetics and drugs used in life are originally sourced from petrochemical products, not original natural raw materials, and this part of carbon is non-biogenic. Therefore, it is difficult to distinguish biogenic carbon and non-biogenic carbon in the carbon dioxide emitted during sewage treatment. Some scholars have calculated the non-biological carbon CO2 emissions of sewage treatment plants, accounting for 29.59%-51.80% of the total CO2 emissions. This shows that if the direct emission of fossil carbon is ignored, the calculation of greenhouse gas carbon footprint will be missing.

The traditional activated sludge denitrification process goes through the process of influent ammonia nitrogen nitrification and denitrification, which are also the main ways to produce N2O. In this process, nitrifying bacteria oxidize NH2OH to NO2-, which in turn produces N2O as a byproduct. At the same time, N2O is also produced by the chemical decomposition of nitrite or hydroxylamine, an intermediate product of ammonia oxidation. Therefore, anaerobic tank, anaerobic tank, aerobic tank and sludge thickening tank are the main sources of N2O release in the sewage treatment process. CH4 in sewage comes from the anaerobic degradation of organic matter by methanogens, which are generally obligate anaerobic bacteria, so CH4 may be produced in an anaerobic environment. In the sewage collection and transportation pipeline, the sewage is in an anaerobic environment, which creates conditions for methanogenic bacteria to anaerobic degrade organic matter, so that the sewage treatment plant carries a large amount of dissolved CH4 in the water, which may be discharged in the subsequent mixing and aeration process.

Indirect carbon emissions from sewage treatment plants come from electricity consumption and drug consumption. The main power-consuming equipment of the sewage treatment plant is aeration equipment, sludge treatment equipment, lifting pumps and other equipment. Aeration equipment is the largest source of electricity consumption in sewage treatment plants, accounting for 49% to 60% of the total electricity consumption, sludge enrichment process accounts for 11%, anaerobic digestion accounts for 9%, and lifting pumps account for 8%. Overall, more than half of the carbon emissions from wastewater treatment plants can be attributed to electricity consumption [4]. Drug consumption comes from additional carbon sources, flocculants and coagulants, liquid chlorine, and alkali to control pH consumption. Each agent also has greenhouse gas emissions during its production and transportation, which are measured by its corresponding carbon emission coefficient.

  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module