I. Hydropower has a long history of development and a complete industrial chain
Hydropower is a renewable energy technology that uses the kinetic energy of water flow to generate electricity. It is a widely used clean energy source with many advantages, such as renewability, low emissions, stability and controllability. The working principle of hydropower is based on a simple concept: the kinetic energy of the water flow is used to turn a turbine, which in turn turns a generator to produce electricity. The steps of hydroelectric power generation are: to divert water from a reservoir or river, there needs to be a source of water, usually a reservoir (artificial reservoir) or a natural river, which provides power; Water flow is directed through a diversion channel to the blades of a turbine. Diversion channels can control the flow of water to adjust the capacity of power generation; The turbine runs, and water hits the blades of the turbine, making it spin. Turbines are similar to wind turbines in wind power generation; The generator generates electricity, and the operation of the turbine turns the generator, which generates electricity through the principle of electromagnetic induction; Electrical energy transmission, the generated electrical energy is sent to the grid to supply urban, industrial and household electricity. There are many types of hydropower, according to different working principles and application scenarios, can be divided into river power generation, reservoir power generation, tidal and Marine power generation, small hydropower. Hydropower has multiple advantages, but there are also some disadvantages, the main advantages are: hydropower is renewable energy, hydropower depends on water cycle, so it is renewable, will not be exhausted; It is a clean energy, hydropower does not produce greenhouse gases and air pollutants, and has a small impact on the environment. With controllability, the hydropower station can be adjusted according to demand to provide reliable base load power. The main disadvantages are: large-scale hydropower projects may cause damage to the ecosystem, and social problems such as resident migration and land expropriation; Hydropower generation is limited by the availability of water resources, and drought or falling water flows can affect power generation capacity.
Hydropower, as a renewable form of energy, has a long history. Early water turbines and waterwheels: As early as the 2nd century BC, people were using water turbines and waterwheels to drive machinery such as mills and sawmills. These machines use the kinetic energy of the water flow to work. The emergence of electricity generation: In the late 19th century, people began to use hydroelectric power stations to convert water energy into electricity. The world's first commercial hydroelectric power plant was built in 1882 in Wisconsin, USA. Construction of DAMS and reservoirs: At the beginning of the 20th century, the scale of hydropower was greatly expanded with the construction of DAMS and reservoirs. Famous dam projects include the Hoover Dam in the United States and the Three Gorges Dam in China. Technological advances: Over time, hydropower technology has been continuously improved, including the introduction of turbines, hydrogenerators, and intelligent control systems, increasing the efficiency and reliability of hydropower.
Hydropower is a clean, renewable energy source with a chain spanning several key links, from water management to electricity delivery. The first link of hydropower industry chain is water resource management. This includes the scheduling, storage and distribution of water flows to ensure a steady supply of water to turbines to generate electricity. Water resource management often requires monitoring parameters such as rainfall, flow rate and water level in order to make appropriate decisions. Modern water management also focuses on sustainability to ensure that power capacity can be maintained even in extreme conditions such as drought. DAMS and reservoirs are key facilities in the hydropower industry chain. DAMS are often used to raise the water level and create pressure, which increases the kinetic energy of the water flow. Reservoirs are used to store water to ensure sufficient flow during times of peak demand. The design and construction of DAMS need to take into account geological conditions, water flow characteristics and ecological impacts to ensure safety and sustainability. Turbines are the core components in the hydropower industry chain. When water flows through the blades of a turbine, its kinetic energy is converted into mechanical energy, making the turbine spin. Turbine design and type can be selected based on water speed, flow and height to achieve the highest energy efficiency. After the turbine spins, it turns connected generators to generate electricity. Generators are the key equipment for converting mechanical energy into electrical energy. Generally, the operation principle of a generator is to induce current by rotating a magnetic field to produce alternating current. The design and capacity of the generator needs to be determined according to the power demand and water flow characteristics. The electricity produced by the generator is alternating current, which usually needs to be processed through a substation. The main functions of the substation include boosting (increasing voltage to reduce energy loss when electrical energy is delivered) and converting current types (converting alternating current to direct current or vice versa) to suit the requirements of the power delivery system. The last step is electrical energy delivery. The electricity generated by the power stations is transmitted through transmission lines to power users in urban, industrial or rural areas. Transmission lines need to be planned, designed and maintained to ensure the safe and efficient transmission of electrical energy to its destination. In some areas, electrical energy may also need to be processed again through substations to meet the needs of different voltages and frequencies.
email:1583694102@qq.com
wang@kongjiangauto.com