Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Current situation and technical conception of gravity energy storage power generation

来源: | 作者:佚名 | 发布时间 :2023-12-23 | 548 次浏览: | Share:

On the basis of tracking and analyzing the development status of gravity energy storage power generation abroad, this paper puts forward a preliminary scheme of gravity energy storage power generation by analogy with pumped storage technology. By analyzing the reasonable net height difference and heavy operation scale of gravity energy storage power generation, the feasibility and theoretical calculation of core indicators such as single unit capacity and power generation efficiency are carried out. Through the introduction of the concepts of "gravity turbine", "upper bin" and "lower bin", the key scientific issues such as the conversion of heavy energy into rotating mechanical energy, the layout of upper and lower bin and the heavy transport system are discussed, and the relevant core technologies and exploration directions are emphasized, and the research concept of gravity energy storage power generation is initially proposed. It is hoped that through the discussion, attention will be paid to gravity energy storage power generation technology, cross-disciplinary cooperation will be promoted, systematic research will be carried out, and theoretical basis and technical support will be provided for the future development of gravity energy storage power generation in China.

1. Analysis of current status of gravity energy storage power generation

The basic principle of gravity energy storage power generation is similar to pumped storage technology. The basic process of energy storage and power generation is as follows: use rich power to lift heavy objects and store potential energy; When needed, by releasing the potential energy of heavy objects, the generator is converted to generate electricity. According to the current relevant foreign data reports, there are mainly four kinds of gravity energy storage power generation technologies: piston gravity energy storage, hanging gravity energy storage, concrete block energy storage tower and mountain gravity energy storage.

The piston Gravity energy storage proposed by California Gravity Power Company [31] is based on pumped-storage unit and uses heavy piston in shaft to replace water body for energy storage, as shown in Figure 1. When the power is rich, it is pumped and pressurized by the pump turbine to lift the heavy piston and store energy, that is, the water body does not store energy directly; When generating electricity, the heavy piston falls, and its potential energy is transferred to the water flow, which is converted by the pump turbine into mechanical energy to drive the generator. Because the density of heavy weight is higher than that of water, the power generation water head and energy density can be increased under the same height difference condition. In other words, compared with pumped storage power stations with the same potential energy, piston gravity energy storage power generation technology can reduce the construction height, reduce the dependence on geographical conditions and water resources, and facilitate the site selection and layout of power stations. The technical scheme retains the core equipment of pumped storage unit, and the pump turbine technology of pumping and generating power is mature, high efficiency, and has unique advantages. However, some technical problems need to be discussed, such as the technically and economically feasible size and scale, and the sealing scheme between them, which need to be paid attention to the follow-up research progress. At present, the capacity of piston gravity energy storage is limited, and it may be suitable for some small and short-term energy storage.

Gravitricity [37-40], a company that applies suspended gravity energy storage technology, plans to build a 250 kW gravity energy storage pilot power plant in Leith Harbour, Edinburgh, to store local excess power. The project mainly plans to use abandoned drilling platforms and mines, adopt 500-5,000 t heavy drilling RIGS as heavy objects, and realize the storage and release of electric energy by repeatedly lifting and lowering the drilling rig in a 150-1,500 m long drilling rig. When the electric energy is abundant, the rig is pulled above the abandoned mine by electric winch, and the electric energy is stored as heavy potential energy. When electricity is needed, it is generated by dropping the rig to drive the generator.

Gravitricity believes its advanced winch and control system will give it enough flexibility to respond quickly in less than one second to meet the grid's peak load balancing needs. Thomas et al. [41] introduced the technical scheme of using suspended weights for energy storage and power generation, and discussed the potential of applying this technology to the transformation of abandoned deep mines. Because a unit only uses one heavy weight to cycle, the corresponding total energy storage and continuous power generation time are very limited.

It is said that the project can operate for up to 30 to 40 years, and the cost will be half the cost of existing grid-scale battery energy storage solutions. When the power is sufficient, the crane lifts the concrete blocks from the ground and piles them up high like building blocks, converting the energy into potential energy of the concrete block tower, that is, the energy storage stage; When it is necessary to generate electricity, the concrete blocks are dropped in turn to release the potential energy of the heavy objects and convert them into electricity. Concrete block tower seems to be a relatively simple energy storage method, but there are mainly the following problems: due to the cyclic lifting of heavy blocks, the whole "tower" is not fixed, belongs to a kind of variable structure, its stability, reliability, safety and so on need to be carefully designed; Considering its own structural characteristics, the scale of a single concrete energy storage tower may be small and the energy storage capacity is limited. In addition, the potential energy stored by each concrete block from the bottom of the tower to the top of the tower is different, and there are no relevant technical reports on how to design lifting, stacking and energy conversion, and whether the expected effect can be achieved. Energy Vault said it has reached an agreement with India's Tata Power company to deploy a 35 MW·h storage system that can generate power within 2.9s with a peak power of 4 MW, which is worth further attention to the development progress.

  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board
  • ABB MC91 HESG440588R4 HESG112714/B Wireless Router Modules
  • ABB PPD113-B03-23-111615 Excitation system controller
  • ABB AB91-1 HESG437479R1 HESG437899 Graphics Expansion Module
  • ABB IT94-3 HESG440310R2 HESG112699/B controller
  • ABB NF93A-2 HESG440280R2 HESG323662R1/HESG216665/K Module Controller
  • ABB IW93-2 HESG440356R1 HESG216678/B I/O module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB RB520 Dummy Module For Submodule Slot
  • ABB SR511 3BSE000863R1 SR511 Regulator 24V/5V
  • ABB DSDP140B 57160001-ACX Counter Board
  • ABB T-1521Z High-Performance Industrial Controller
  • ABB R-2521Z Industrial Control Module
  • ABB COM0002 Industrial Communication Module
  • ABB TAS.580.0550G00 Industrial Controller Module
  • ABB TAS.580.0560G00 Industrial Controller Module
  • ABB SPAJ110C Earth-fault relay
  • ABB TP858 3BSE018138R1 Industrial Control Module
  • ABB SD821 3BSC610037R1 Digital Controller
  • ABB 128877-103 High Precision Industrial Control Module
  • ABB CI853-1 communication interface module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB 5SDF1045H0002 IGBT Silicon Controlled Rectifier
  • ABB TC512V1 3BSE018059R1 Bus Module
  • ABB UCD240A101 Industrial Controller Module
  • ABB TC820-1 Industrial Control Module
  • ABB PM820-2 PLC Pulse Counter Module
  • ABB PM820-1 3BSE010797R1 Processor Module
  • ABB TP830 Industrial Automation Control Module
  • ABB 3ASC25H705/7 control module
  • ABB UAD154A Industrial Automation Module
  • ABB PPD113B01-10-150000 3BHE023784R1023 Controller Module
  • ABB UNS2880B-P V1 Digital I/O Module
  • ABB PFEA112-20 3BSE050091R20 Tension Control amplifier
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Communication
  • ABB PPC380AE02 Industrial Control Module