Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Current situation and technical conception of gravity energy storage power generation

来源: | 作者:佚名 | 发布时间 :2023-12-23 | 635 次浏览: | Share:

Measures such as vigorously developing non-fossil energy and promoting green energy use modes are the key to achieving China's "dual carbon" goal [1]. The medium - and long-term strategic goal of China's energy revolution clearly states that by 2030, non-fossil energy generation will account for 50% of total power generation, and by 2050, non-fossil energy consumption will exceed half [2]. At present, the renewable clean energy with large-scale development is mainly hydropower, wind energy and solar energy. Water energy is developed earlier, the most mature technology, is a high-quality green energy. At present, the scale of new construction of conventional hydropower in China has slowed down in general, and has entered a moderate and orderly stage from rapid and concentrated development [3-5]. The development space of wind energy and solar energy is huge, and from the perspective of global development trend, the growth rate is fast [6]. In December 2020, China announced at the Climate Ambition Summit that by 2030, the total installed capacity of wind and solar power in China will reach more than 1.2 billion kW. As we all know, wind energy and solar energy are greatly affected by natural factors, and the prominent problem is the randomness and intermittency of power generation. Large-scale access to the grid will bring many problems in power balance, power consumption, stability control and other aspects, especially after the increase of their proportion, high requirements and new challenges will be put forward for the rapid and flexible adjustment of the power system [7-10]. In order to ensure the safe and stable operation of the power system after the access of various types of fluctuating power supplies, energy storage is the most effective solution and can not be ignored. Therefore, energy storage technology has become one of the hottest topics in today's energy research [11-15].

Energy storage involves a wide range of fields, according to the way of energy storage, can be roughly divided into physical energy storage, chemical energy storage, electromagnetic energy storage and heat storage. Chemical energy storage mainly has a variety of battery class electrochemical energy storage, hydrogen energy storage and so on. Electrochemical energy storage can meet the needs of diverse scenarios, but it needs to face security risks, environmental pollution, operating costs and other unavoidable problems; Hydrogen energy storage is suitable for large-scale energy storage and long-period energy regulation, but it is still in the demonstration application stage. Electromagnetic energy storage, such as superconducting electromagnetic, supercapacitors, etc., has low energy density and high cost. Heat storage technology has good market value in specific application fields such as electric heating, electric heating, industrial heating, solar thermal energy storage system, etc. Physical energy storage mainly includes pumped storage, compressed air energy storage, flywheel energy storage, etc. Compared with other energy storage methods, it has significant advantages of low impact on the environment and high safety. At this stage, compressed air energy storage and flywheel energy storage do not have the conditions for large-scale commercial application, so pumped storage is the most widely used large-capacity energy storage technology [16-19]. On July 15, 2021, the National Development and Reform Commission and the National Energy Administration issued a document clarifying that "pumped storage and new energy storage are important technologies and basic equipment to support new power systems" [20]. Pumped storage power station has the functions of peak load and valley filling, frequency and phase regulation, emergency backup, etc. At present, most of the energy storage in the world is achieved by pumped storage. Objectively speaking, although the construction cycle of pumped storage is longer and the cost is higher, it has obvious technical advantages in many aspects such as storage capacity scale, technical maturity and service life. In recent years, China's pumped storage industry has developed rapidly, and has reached the world-class level in terms of applied head, single unit capacity and unit development technology. Pumped storage power stations have become the main body of energy storage in China's power grid [21-25]. Of course, the development of pumped storage power stations requires appropriate geographical conditions and water resources, which limits the application of pumped storage technology to a certain extent [26-27].

In recent years, based on the basic principle of pumped storage, there have been some foreign research reports on new gravity energy storage technologies [28-30]. Gravity energy storage is to lift heavy objects through transport, so as to convert rich electric energy and store it as the potential energy of heavy objects. In order to reduce the height of pumped storage power station and facilitate engineering layout, some scholars put forward an improvement scheme, namely piston gravity energy storage technology [31-36]. The technology retains the pumped storage unit, and the water body does not store energy directly, but uses a heavy piston to store energy. In addition, the gravity Energy storage power generation scheme reported by Scottish startup Gravitricity, Swiss energy storage company Energy Vault and Austrian research institute International Institute for Applied Systems Analysis (IIASA) does not involve water, but replaces the energy storage medium with a solid weight. Such as sand, rocks, concrete blocks and other similar weight materials [37-46]. At present, there are few relevant academic research materials in China, mainly for research reports relying on mountain energy storage for power generation [47-52], and some public patents on gravity energy storage for power generation [53-60]. The location of gravity energy storage power station is flexible, and it can use wasteland, mountains and other free Spaces to avoid agricultural and ecological land, which can get rid of the restrictions on geographical conditions to a certain extent, and has important value. However, as a potential green energy storage method, gravity energy storage power generation is still in the stage of exploration and development. Therefore, it is necessary to carry out extensive scientific proof and technical analysis.

  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card