All these will accelerate the pace of recovery in the new shipbuilding market and promote the further increase of new ship transactions on the basis of 90 million deadweight tons.
Fourth, the capacity adjustment of the shipbuilding industry is nearing an end.
Since the financial crisis, hundreds of cases of bankruptcy liquidation and merger and reorganization of global shipbuilding enterprises have been affected by factors such as the sharp decline in orders and the continuous decline in ship prices. Among them, from 2012 to 2016, the capacity adjustment of the shipbuilding industry was mainly based on shutdown, bankruptcy and liquidation, and gradually spread from small and medium-sized enterprises to large shipbuilding enterprises; From 2016 to 2020, the adjustment of the shipbuilding industry will shift to mergers and acquisitions between large and medium-sized enterprises, including the acquisition of high-quality shipyard assets by advantageous enterprises and the merger and reorganization of large enterprise groups.
After the above two rounds of capacity adjustment, under the role of the market, the number of active monoshipyard with orders or delivery records of ships over 10,000 tons in the world decreased from 440 to about 180 in 2016, and remained basically stable; In 2020, affected by the epidemic and the market correction, the number of shipyards receiving orders or delivering ships fell to about 150. In the past three years, although the operation of shipbuilding enterprises is still difficult, the economic operation of major shipbuilding enterprises in China, Japan and South Korea is generally stable, and the production capacity clearance process has basically ended.
At present, the global shipbuilding capacity is stable at about 120 million deadweight tons, the annual completion of about 90 million deadweight tons, and the capacity utilization rate is 75%, which is at the normal level of industrial development. Judging from this, this round of capacity correction in the world shipbuilding industry is basically coming to an end. In the future, the growth of demand for new shipbuilding and the rise in raw material prices will significantly drive the rise in the price of new ships.
We believe that the long-awaited market recovery of shipbuilding industry enterprises is in front of us, the long-term passive market position is changing, and after the great waves, the shipbuilding industry will be left with a broader stage.
Second, zero-carbon ships have changed from a future trend to a reality
With the continuous promotion of IMO's global shipping greenhouse gas emission reduction strategy, the world has set off new technology and new products such as ammonia powered ships, hydrogen powered ships, Marine carbon capture, carbon dioxide carriers, hydrogen carriers and other R&D competitions. New energy power, which was mainly applied in the field of small special ships in the past, continues to spread to conventional ships such as container ships, oil tankers, bulk carriers, and car carriers, and the demand for new shipbuilding market is rapidly shifting to green ships. In the new shipbuilding orders, the proportion of dual-fuel or clean-fuel ships has reached about 30%, and the era of green ships has come.
However, due to the parallel development of different technical routes and the lobbying and voice of different international organizations for their own interests, the maritime community has not yet formed a unified opinion on the development direction of ship power.
First, any energy application can theoretically be carbon neutral.
At present, the core goal of the international community to promote climate governance is to achieve carbon neutrality, rather than eliminate fossil energy or any other kind of energy. At present, the main Marine fuels explored by the Marine industry, whether hydrogen, ammonia, LNG, LPG or methanol, can achieve carbon neutrality during energy conversion or use.
Hydrogen and ammonia can be produced by electrolysis/synthesis of renewable energy sources or by fossil energy sources; LNG itself can be a fossil fuel, but also through renewable energy synthesis, or through biomass fermentation; Methanol (CH4O) can be prepared from fossil fuels, renewable energy sources, or biomass fermentation; LPG is a mixture that is mainly formed during fossil energy extraction or refining.
These fuels are either inherently zero-carbon, even if they are fossil fuels or derived from fossil fuels, supplemented by carbon capture processes, and can still be carbon neutral. In addition, fuels such as fuel oil, LNG, and LPG from fossil energy sources can also meet regulatory requirements by paying carbon taxes or purchasing carbon credits after use.
Pathways to carbon neutrality for different energy sources
Second, the type of fuel used by ships depends on the energy supply system formed by the whole society.
With the advancement of the global climate governance process, there will be a parallel development of three primary energy sources, including renewable energy, biomass energy and fossil energy, and have an impact on the secondary energy structure.
email:1583694102@qq.com
wang@kongjiangauto.com