Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The rise of independence is unstoppable, and intelligence will become an important winner and loser

来源: | 作者:佚名 | 发布时间 :2023-12-28 | 607 次浏览: | Share:

High-end models have begun an intelligent arms race, and intelligent acceleration is also expected to shorten the vehicle replacement cycle. With the continuous improvement of the level of autonomous driving, the requirements for AI chip computing power of cars are also getting higher and higher. According to the analysis of automatic driving computing power demand proposed by NVIDIA, the chip computing power demand of L0-L2 level automatic driving is below 10 TOPS, and the chip computing power demand of L3 level automatic driving is between 30 and 100 TOPS. L4/L5 level automatic driving requires chip computing power requirements above 100/1000 TOPS, respectively. On the one hand, with the improvement of automatic driving level, the number of sensors (such as cameras, millimeter-wave radar and lidar) is more and more, and AI chips need to process more and more data; On the other hand, the number of scenarios and decisions processed by AI chips have increased geometrically. According to the cost of the automated driving system (including sensors and domain controllers), the cost of the L0/L1 level assisted driving system is between $275 and $325, and the cost of the L2/L2+ level automated driving system is between $450 and $550 and $750 and $1,200. The cost of an autonomous driving system at level 3 is more than $4,000.

Will the replacement logic of smart phones play out in the era of smart cars? We may have underestimated the demand for car swaps. Compared to the development of the smartphone era in the past 10 years, the iPhone will have a new hardware upgrade after the new flagship phone is launched every year, and the latest iOS system is often not all forward compatible due to high requirements for hardware configuration. To some extent, this also leads to the phenomenon that the replacement cycle of smart phones will be shortened when the technology has made significant progress (for example, 5G has shortened the replacement cycle of smart phones). With the improvement of smart car configuration and computing power, as well as the gradual evolution of intelligent driving and intelligent cockpit, we expect that smart cars are also expected to usher in a shorter replacement cycle in the future.

The importance of "intelligence" on the demand side is increasing, and it will eventually usher in "jump". A car is a product with many needs. Traditional needs include handling, power, price, appearance, space, ride comfort, etc. In the age of intelligence, people's energy invested in "driving" is released, the need for control, power decline, and the requirements for assisted driving/autonomous driving and cockpit intelligence rise. Although the functions of L2.5+ assisted driving products provided by manufacturers are mainly concentrated in high-speed closed roads and automatic parking scenes, so it is not "just needed" for consumers, but we believe that with the development and maturity of this technology, reliability and safety improvement will bring qualitative changes to the car experience. The importance of autonomous driving on the demand side will "jump." Once the functions of autonomous driving and smart cabins are greatly improved, consumer demand is also expected to jump. The current average replacement cycle for passenger cars in China is 14 years, and intelligence may shorten this replacement cycle at some point in the future.

Why will the smart car pattern appear first decentralized and then centralized trend? The redefinition of automotive products by intelligent electric vehicles is a challenge to the original R&D organization form of traditional automobile companies, which requires close cooperation between software, hardware, mechanical engineers and product planning to jointly complete product definition and R&D design. Companies with stronger full-stack R&D capabilities and more flexible R&D organizational forms are expected to define better products and achieve higher sales and market share. Larger vehicle sales and longer driving range will also generate more data to optimize autonomous driving algorithms, helping Oems achieve a better experience on autonomous driving. Therefore, from the perspective of the final idea, the concentration of intelligent electric vehicles must ultimately be higher than that of traditional fuel vehicles.

However, at present, it is still in the "early spring and Autumn" of intelligent electric vehicles, and there are a large number of people who have not entered the game. In addition, the production capacity investment, production, and production models in the automotive industry exit cycle is much longer than consumer electronics, in recent years, Changan Peugeot Citroen (DS), Dongfeng Renault and Borgward Automobile, for example, production capacity and brand exit cycle is about 6-8 years. Under the wave of smart electrification, we see three forces converging in the automotive industry, which is expected to usher in a period of intensive new brands and new capacity increase in the next five years, and there may be a crowded scene in 2021-2025:

  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module