Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Review and prospect of metallurgical history research in China

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 680 次浏览: | Share:

Metallurgical technology has played an important role in the origin and development of Chinese civilization, and the source and flow of Chinese metallurgical technology has always been a hot issue of academic concern. Through the systematic analysis of early copper and copper smelting industry in Northwest China, Central China, Central Asia and West Asia, it is concluded that the early development of copper smelting industry in Northwest China is the premise of maintaining cultural interaction with Central Asia. The Northwest of China did not accept the metallurgy from Central Asia and beyond passively, but took the initiative to transform and utilize it, and constantly formed its own characteristics. The true rise of metallurgy in the Central Plains and the formation of an independent Chinese style was finally realized in the late Erlitou culture." Recently, Chinese scholars have demonstrated in real objects that the cultural exchanges between China and the West took place in the Eurasian steppe, and that the development of Chinese civilization is a history of continuous exchanges between Chinese culture and the excellent cultures of other countries or nations in the world. Archaeological evidence also shows that there are several core areas of bronze civilization in China, and the archaeological culture in the Central Plains also has an influence from east to west. Although many research results have been achieved, the understanding of the origin, transmission process and transmission mechanism of metallurgical technology in China is still unclear, and the research on the similarities and differences of metallurgical handicraft industry between Central Plains and frontier areas in the pre-Qin period, and the relationship between metallurgy and regional civilization development are still not in-depth. Therefore, the research methods of metallurgical archaeology should be further developed and the metallurgical sites in the pre-Qin period should be investigated. It is of great academic significance to systematically sort out and analyze the existing and newly discovered archaeological data, clarify the development of metallurgical handicraft industry in Central Plains and border areas and their mutual relations, and put forward the regular understanding of the relationship between metallurgical technology and civilization development in early China.

(2) The formation of iron and steel technical system in ancient China and its economic and social impact

Through the comprehensive study of metallography and chronology, it can be inferred that the earliest use of artificial iron smelting products in China can be advanced to the 14th century BC, and the earliest use of iron ware in Xinjiang is earlier than the 10th century BC. After the technology of block iron smelting spread to the Central Plains in the late Western Zhou Dynasty and the early Spring and Autumn period, it rapidly developed into a technical system of pig iron. The spread of pig iron technology to the northwest, southwest and northeast of China, especially to Vietnam, the Korean Peninsula and the Japanese islands, has been deeply studied. These research results build a more detailed development process of ancient Chinese iron and steel technology, indicating that pig iron smelting and raw iron steel technology system is another major creation of ancient Chinese metallurgical technology, although starting from the iron smelting and raw iron steel technology in China has been relatively sufficient research. However, the time and mechanism of the origin of iron smelting technology in China, the significance of large-scale use of pig iron, the invention of stir-frying steel technology and its judgment criteria, the formation and mechanism of steel pouring technology system, the formation time and source of crucible iron making technology still need to be further studied. The question of the formation of the technical system of iron and steel in ancient China should also be discussed in a broader archaeological context, and archaeological evidence should be selected from various aspects, such as ore raw materials, blast technology, refractory materials, furnace structure, and operation process. In addition, the research on the effect of pig iron and raw iron steel technology on social progress is also worthy of attention. On the basis of the full investigation of domestic and foreign documents, the investigation of iron-smelting sites, the analysis of smelting relics and the arrangement of archaeological data are combined for comprehensive research, and the issue of the technical exchange of iron and iron-smelting is placed in the framework of the entire history of material and cultural exchange, so as to make a breakthrough in the overall analysis of the exchange and dissemination between the East and the West as well as between China and neighboring countries.


  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module