Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The main technical development direction in the field of iron and steel metallurgy in China

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 604 次浏览: | Share:

As the most important raw material industry, the most fundamental task of the steel industry is to provide the society with sufficient quantity and excellent quality of high-performance steel products with the lowest resource and energy consumption, the lowest environmental and ecological load, and the highest efficiency and labor productivity to meet the needs of social development, national security and people's lives. To complete such a task, I believe that the iron and steel industry should grasp the following main technical development directions in the field of iron and steel metallurgy:

1. Low-carbon iron making technology

In the context of global efforts to reduce greenhouse gas emissions, the international steel industry is actively developing technologies to reduce CO2 emissions in the iron making process, one of which is to develop low-carbon iron making technologies along blast furnaces. It mainly focuses on the study of the use of carbon and iron composite charge in blast furnaces, the recycling of top gas of blast furnaces, the injection of hydrogen-containing substances (hydrogen rich, natural gas, COG), the injection of high oxygen rich (oxygen rich rate ≥30% or total oxygen), and the extremely limited coal injection. Hydrogen-containing substance injection (hydrogen-rich injection) has the effect of significantly reducing carbon emission, increasing the content of hydrogen injection is the development trend of blast furnace technology, especially should be paid attention to. In addition, the optimization of the structure of high pellet ratio charge, the optimization of ore blending and the optimization of particle size ratio and distribution of the charge, and the high efficiency blast furnace smelting technology are also being implemented.

2, low carbon, emission reduction of non-blast furnace ironmaking technology

Another important research direction of ironmaking technology is non-blast furnace ironmaking technology. Compared with blast furnace ironmaking technology, non-blast furnace ironmaking technology is conducive to getting rid of the shortage of coking coal resources, changing the energy structure, saving energy, significantly reducing SOx and NOx emissions in coking and sintering, and protecting the environment, which is an important direction and means to achieve energy conservation and emission reduction in the iron and steel industry. Non-blast furnace ironmaking technology using hydrogen reduction can greatly reduce CO2 emissions.

1) Melting reduction technology

The smelting reduction technologies of non-blast furnace ironmaking include Hismelt, Hisarna, COREX, FINEX, flash ironmaking, etc. The FINEX smelting reduction technology developed by Posco in South Korea has been industrialized and exported. At the same time, POSCO has combined FINEX with other technologies to form new non-blast furnace ironmaking technologies, such as POIST process, mixed hydrogen reduction process, nuclear hydrogen reduction process, etc. The American Iron and Steel Institute is currently working on non-blast furnace ironmaking projects to reduce CO2 emissions from the steel industry, including hydrogen flash smelting to produce pig iron (using hydrogen as fuel), molten oxide electrolysis research, new suspension ironmaking technology, and carbon dioxide geological storage research. China's Baosteel has introduced COREX melting reduction technology, taking into account economic factors, is now moved to Xinjiang to continue to work. Academician Zhang Wenhai is developing flash ironmaking technology and is building pilot test equipment in Hebei.

Most of the above-mentioned melting reduction technologies cannot get rid of the basic conditions of pulverized coal as raw materials, so the effect in terms of carbon emissions is limited. According to its advantages and problems, we should use hydrogen-based reducing agent to develop a low cost, high efficiency and low carbon emission melting reduction iron making technology with Chinese characteristics.

2) Direct reduction technology

There are many ways of direct reduction, such as tunnel kiln direct reduction, rotary kiln direct reduction, shaft furnace direct reduction and so on. The fuel can be coal - or gas-based. But at present, the most successful is the direct reduction of gas-based shaft furnace, and there are already 2.5-3 million tons of gas-based shaft furnace direct reduction units using natural gas in industrial operation. It has developed rapidly in areas with abundant natural gas and low prices, and is currently the main production mode of DRI. In view of China's situation, the use of selected iron concentrate and non-coking coal to gas, continuous hot charge electric furnace smelting, may be lower cost than blast furnace production of high-quality pure steel, which is a competitive production mode that some small steel mills can adopt, it is worth combining China's national conditions, especially for China's unique resources such as: The research and application of high chromium type vanadium titanium ore and boron-bearing ore are carried out to go out of our own way.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller