In recent years, hydrogen energy as a green, clean and efficient secondary energy is accelerating development. If the steel production achieves "hydrogen instead of carbon" energy conversion, it will greatly reduce carbon emissions from the source, and even achieve "net zero carbon" emissions from steel production. The principle of metallurgical reduction reaction reflects that hydrogen is a good and efficient reducing agent. The diffusion rate of hydrogen is about 4 times that of carbon monoxide, and the diffusion rate of its reduction product water is about 1.5 times that of carbon dioxide, so hydrogen can reach the reaction interface faster than carbon monoxide through the fine pores of the ore, and the water vapor generated after reduction is also faster than carbon dioxide diffusion. Hydrogen not only has a reducing effect, but also has a catalytic effect on carbon monoxide reduction. It can be seen that hydrogen reduction is more efficient than carbon reduction, and the hydrogen reduction product is water, and no greenhouse gases are produced. Iron and steel production if the use of "hydrogen reduction" instead of "carbon reduction", it can save the sintering, coking and other heavy pollution processes, its product - direct reduced iron can supplement the lack of scrap steel resources in China, provide high-quality pure iron for high-quality steel, is the pure raw material of electric furnace production of high-end high-quality steel and special steel, and then improve the international competitiveness of China's high-end green low-carbon steel products.
Brave innovation no man's land --
Leading the subversive change of the green development of the world's steel industry
In order to effectively seize the development opportunity of restructuring the energy use system of steel production, MCC Jingcheng joined hands with Hesteel Group to explore the use of hydrogen energy in iron and steel metallurgical production process. But to develop hydrogen metallurgy, we must solve two preconditions.
One is that hydrogen must be abundant and cheap. Hydrogen energy is a secondary energy source, unlike coal, oil and natural gas, which can be directly mined from the ground, and must be produced by using other energy sources through certain methods. Due to resources and energy endowments, hydrogen production in China is mainly through fossil fuels, mainly in the chemical industry. As an iron and steel complex, the coking process can not only provide high-quality coke for the blast furnace, but also its byproduct - coke oven gas contains about 60% hydrogen. For hydrogen metallurgy, coke oven gas can meet the demand of gas source well both in terms of supply scale and economy. However, this is based on existing resources and energy endowments using coke oven gas to produce hydrogen, and is only a transition. The first phase of the 1.2 million ton hydrogen metallurgical Engineering Demonstration project of Zhang Xuan Technology has laid the foundation for the realization of 100% green hydrogen shaft furnace direct reduction in the future. In the future, with the development of distributed energy power generation and nuclear power industry, hydrogen production technology will progress rapidly, and relevant institutions predict that from 2025 to 2030, large-scale and cheap hydrogen will be widely used in the whole society, providing a stable gas supply for the future development of hydrogen metallurgy.
Second, a complete set of processes and equipment must be developed as process carriers. Modern iron and steel industry has developed quite mature, the current mature processes at home and abroad mainly include blast furnace, molten reduction, coal and gas based direct reduction, etc., of which the blast furnace process mainly uses coke and coal-based carbon thermal reduction system, molten reduction and coal-based direct reduction process although there can be no coking and sintering processes, but still is coal for energy of carbon metallurgy. Even though these processes can achieve local hydrogen rich injection, they cannot essentially change the properties of carbon metallurgy. Mature gas-based direct reduction process is mainly concentrated in North Africa and the Middle East, using natural gas as the gas source, natural gas after reforming to obtain a mixture of hydrogen and carbon monoxide for iron reduction, from the principle point of view is the closest to the concept of hydrogen metallurgy. Therefore, in order to realize the energy reconstruction of "replacing carbon with hydrogen", the selection of gas-based direct reduction as the process carrier meets the innovative demand of hydrogen metallurgy process.
After solving the gas source and determining the process, on November 22, 2019, the major event "About Hesteel Group and TENOVA of Italy and MCC Jingcheng jointly develop and build the world's first 1.2 million tons of hydrogen metallurgy demonstration project" was publicly released for the first time. It is also confirmed that the world's first set of hydrogen metallurgy project of Hesteel Group aims to use coke oven gas "self-reforming" to produce hydrogen and produce green high-quality direct reduced iron. Its basic route is: Innovative research and development from the whole process of distributed green energy, low-cost hydrogen production, coke oven gas purification, hydrogen metallurgy, finished product transportation, carbon dioxide removal, etc., to explore a world steel industry to develop low-carbon, or even "zero carbon" economy, starting from changing the energy supply structure, thoroughly solve the environmental pollution and carbon emissions generated in the process of iron and steel metallurgy. Lead the green and low-carbon transformation of steel smelting process.
email:1583694102@qq.com
wang@kongjiangauto.com