Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

A subversive change from "carbon metallurgy" to "hydrogen metallurgy"

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 707 次浏览: | Share:

Recently, the Hesteel Zhangxuan Technology hydrogen energy development and utilization engineering demonstration project designed by MCC Jingcheng has undergone safe, smooth and continuous production, and the metallization rate of high-purity direct reduced iron has stabilized at more than 94%, and the indicators have reached the international first-class standards, marking the world's first 1.2 million tons of hydrogen metallurgy engineering demonstration project phase I project success. It also marks the transformation of China's steel industry from the traditional "carbon metallurgy" to the new "hydrogen metallurgy" to take a subversive, demonstrative and key step, opening a new era of green, low-carbon and intelligent development of the steel industry.

From the start of construction on May 10, 2021, to the completion and operation of the full line on December 16, 2022, the first phase of the world's first 1.2 million tons hydrogen metallurgical engineering demonstration project jointly developed and constructed by Hesteel Group and TENOVA (Italy) and MCC Jingcheng was completed and put into operation in Zhangxuan Technology of Hesteel Group. It unlocked a new application scenario for the comprehensive utilization of hydrogen energy in the world. In this project, for the first time in the world, the high-pressure shaft furnace zero reforming hydrogen metallurgy technology with coke oven gas as reducing gas is adopted. The hydrogen carbon ratio in the process gas is as high as 8∶1, and the metallization rate of the product - green and high purity direct reduced iron is more than 94%, reaching the international first-class standard. Compared with the same BF long process production, carbon dioxide emissions can be reduced by 800,000 tons per year, and the emission reduction ratio can reach 70%. China Iron and Steel Industry Association pointed out in its congratulatory letter that this is a major breakthrough in the core key technology innovation of hydrogen metallurgy, an important milestone in the history of China's steel and even the world's steel history from the traditional "carbon metallurgy" to the new "hydrogen metallurgy" transformation, leading the steel industry into the era of "hydrogen instead of coal" smelting "green steel".

Approaching the world's first 1.2 million tons of hydrogen metallurgy engineering demonstration project, you can see that behind it, it is the breakthrough shackles of restructuring the energy system, the responsibility of boldly breaking into no man's land of innovation, and the collection of wisdom and strength of intelligent construction.

Reconstructing energy use system

Breaking the ceiling on carbon reduction in steel

In recent years, climate change has become the focus of continuous global attention, and countries are committed to promoting carbon emission reduction actions. As a major carbon emitter, the traditional steel industry is facing increasingly severe carbon emission reduction tasks. The energy carrier of traditional steel production mainly comes from carbon elements, so the gas emissions of the steel industry are mainly carbon oxides. From a global perspective, in 2022, the global steel industry carbon emissions of about 2.8 billion tons, accounting for about 8% of the global energy system emissions, China's steel industry carbon emissions contributed to the global steel carbon emissions of more than 60%, accounting for about 15% of the national total carbon emissions, is China's manufacturing sector in the field of carbon emissions in the industry. It can be seen that the carbon emission reduction task of the steel industry is very difficult, and promoting the carbon reduction of the steel industry is the key focus area of China's "double carbon" goal. After years of development, the production technology of China's iron and steel industry has reached the world-class level, and the energy saving and carbon reduction space centered on improving the efficiency of carbon energy utilization has tended to be small, which means that through traditional process technology innovation to promote the long process production of blast furnace to reduce carbon has almost touched the ceiling.

On May 17, 2023, the EU Carbon Border Adjustment Mechanism (CBAM) officially came into effect, meaning that many industries such as steel and cement will be levied a "carbon tax". According to the forecast, the export cost of China's steel industry will increase by 4% to 6%, which is roughly $200 million to $400 million. At the same time, the steel downstream industry is also increasingly concerned about the carbon emissions of steel products, such as Mercedes-Benz, BMW and other automobile companies have asked steel suppliers to provide life cycle evaluation reports of automotive panel products, and put forward "green steel" requirements. This means that if the carbon emissions of the steel industry cannot be reduced as soon as possible, it will not only directly affect the international competitiveness of steel products through the "carbon cost increase", but also affect the green development of the downstream manufacturing and construction industry through the "carbon footprint". Therefore, to achieve breakthrough carbon reduction in steel production, it is necessary to start from the source of energy. The new concept of reconstructing the energy system for steel production has pointed out a new direction for breaking the ceiling of low-carbon emission reduction in metallurgy.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module