Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Research progress of biomass conversion and utilization technology

来源: | 作者:佚名 | 发布时间 :2024-01-04 | 779 次浏览: | Share:

2.2.2 Preparation of ethanol or methanol by enzyme technology

Various green plants (such as corncobs, fruits, beets, sweet sorghum, straw, straw, wood chips, grasses, and many cellulose-rich raw materials) can be used as raw materials for ethanol extraction. Ethanol, also known as alcohol, is often called "green oil" as a fuel. There are many ways to produce ethanol, mainly: ① the use of sugar-containing raw materials directly fermentation; ② Indirect use of carbohydrate or starch fermentation; ③ Cellulose raw materials such as wood are hydrolyzed by acid or enzyme hydrolysis to ethanol.

2.3 Thermochemical conversion technology

Thermochemical conversion technology refers to the use of chemical means to convert biomass into high-grade, easy to store, easy to transport, high energy density and commercial value of solid, liquid and gaseous fuels, as well as heat, electric energy and other energy products, fuel material technology J. Thermochemical conversion is an effective method to produce biofuels from biomass, which mainly includes baking, liquefaction, pyrolysis and gasification technologies. Through these conversion technologies, solid, liquid and gaseous biofuels produced from biomass are used for heat and electricity generation. Liquid bio-oil can be further converted into chemicals, while syngas can be synthesized into liquid fuel.

Pyrolysis is one of the best processes to deal with solid waste, the temperature is generally 300 ~ 600℃, there are three ways of slow pyrolysis, fast pyrolysis and flash pyrolysis. The process can be divided into four stages: material drying, hemicellulose pyrolysis, cellulose and lignin pyrolysis. In the process of biomass pyrolysis, heat is transferred layer by layer from outside to inside. The first is the surface of the particle, and then from the surface to the interior of the particle, the heated part of the particle is rapidly cracked into charcoal and volatile components, and the products after cracking will continue to crack under the action of temperature. Most of the biomass pyrolysis processes used in practice are atmospheric or near-atmospheric reactions, and the pyrolysis products are mainly composed of bio-oil, gas and solid carbon.

Biomass gasification is also a kind of biomass thermochemical transformation, its basic principle is in the case of incomplete combustion, the raw material heating, so that the high molecular weight of the compound cracking into H2, CO, small molecular hydrocarbons and CO2 and other low molecular weight mixture process. Air or oxygen, water vapor, and a mixture of water vapor and oxygen are usually used as gasification agents. The product of gasification is syngas, which is further converted into liquid fuels such as methanol and ethanol through Fischer-Tropsch synthesis or biosynthesis, and can also be directly used as fuel for gas motors.

2.4 Solid waste treatment technology

For the treatment of solid waste, there are three traditional ways: landfill, incineration and biochemical treatment. Landfill and incineration methods result in a waste of resources and energy. At present, more in-depth research has been done on the reuse of biomass energy in waste at home and abroad, mainly using feed, fertilizer, biogas, fuel and other ways to make scientific and effective use of biomass. If it is processed into feed, make full use of its nutrients; Composting technology was used to treat yard waste, organic biological waste, organic residual sludge and agricultural waste. Biogas technology is used to treat all kinds of organic wastes in agriculture, industry and human life. In order to avoid secondary pollution while producing biogas, it is necessary to reuse biogas residue and biogas liquid, which can be directly used as fertilizer or made into commercial fertilizer by solid-liquid separation. Using the compression molding technology of biomass, the original loose, fine, amorphous biomass raw materials can be compressed into rod, granular, block and other forming fuels under certain conditions.

2.5 Biomass liquefaction technology

The liquefaction technology of biomass energy refers to the technology of converting biomass into liquid fuel by hydrolysis, pyrolysis or catalysis. By chemical processing of biomass, liquid fuels such as fuel ethanol, methanol, bio-oil, etc. Under certain conditions, biological fermentation or acid hydrolysis technology can be used to convert biomass into ethanol for automotive or other industrial use. The use of biomass liquefaction technology can not only improve the utilization efficiency of biomass, but also expand its application range. Making liquid fuel from biomass liquefaction will be a frontier technology with development potential.

2.6 Supercritical transformation technology of biomass

Supercritical fluid (SCF) is a kind of fluid which is above critical temperature and critical pressure and has good fluidity, transferability, diffusivity and solubility between gas and liquid. It has the dual properties and advantages of both gas and liquid. Near its critical point, small changes in pressure and temperature will cause large changes in fluid density, solubility, dielectric constant and other physical properties.

  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module