Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Progress in the application of biomass energy power generation technology at home and abroad

来源: | 作者:佚名 | 发布时间 :2024-01-04 | 801 次浏览: | Share:

1.5.3 Pollutant discharge problem

At present, China has no specific provisions for the emission of pollutants from pure burning biomass generators, and can only refer to GB 13223-2011 "Air pollutant emission standards for thermal power plants", and NOx and SOx emissions are required to be less than 100 mg/ m3. With the increasingly stringent pollutant emission requirements for coal-fired power plants, the future pollutant emission control of pure burning biomass power plants should also be strictly implemented in accordance with the ultra-low emission standards for coal-fired power plants, with NOx below 50 mg/ m3 and SOx below 35 mg/ m3.

In biomass fuel, the sulfur content is low, and the alkali metal content is high, which has a good self-desulfurization performance. On the basis of optimized design, the original SOx emission of most boilers can meet the requirements of ultra-low emission. For individual biomass fuels with high sulfur content, the method of adding limestone in the furnace can be used to desulphurize, which has low investment and operating cost, and can also easily achieve ultra-low emission of SOx.

Regarding NOx emission, the original generation of NOx can be effectively controlled by strengthening the local reducing atmosphere on the surface of coke particles through the adjustment of the flow pattern in the furnace, adjusting the ratio of primary and secondary air and the setting of secondary air, and increasing the reducing atmosphere space in the furnace. On this basis, the addition of non-selective catalytic reduction (SNCR) method to further reduce nitrogen oxide emissions can achieve ultra-low emissions.

Whether it is desulfurization or nitrogen removal, in order to further achieve the requirements of ultra-low emissions, it is necessary to increase a certain amount of investment and operating costs. The power generation cost of pure biomass power plants has further increased, and the survival difficulty of power plants has increased in the case of inadequate policy subsidies.

2 Biomass mixed combustion technology

2.1 Technical Advantages

Due to the regional nature of biomass energy, it is difficult to expand the scale of pure burning biomass power plants. In addition, considering the high temperature corrosion caused by biomass combustion, the improvement of steam parameters is limited, and the thermal efficiency of pure biomass power plants is low. If the existing boilers, steam turbines and auxiliary systems of coal-fired power plants can be used to replace part of coal as boiler fuel with biomass fuel, the initial investment in pure biomass power generation can be greatly reduced. Relevant studies have shown that processing the same amount of biomass fuel can save about 50.0% of the initial investment. In addition, the parameters of the coal-fired boiler units in operation are high, and the power supply efficiency is generally about 40.0%. Relying on high-efficiency coal power units, the power supply efficiency can be improved by about 10.0% compared with pure burning biomass power plants.

The most prominent advantage of biomass co-firing technology is that when biomass is co-fired with coal, the content of alkali metal and Cl in biomass fuel is diluted by the addition of coal, and a series of problems such as ash and slag deposition in boiler operation can be effectively solved, and the boiler availability rate can reach the level of coal-fired boilers.

Due to the above-mentioned advantages of coal-fired coupled biomass power generation, it is widely used around the world, and the proportion of biomass power generation in some countries is as high as 15.0% to 20.0%.

2.2 Application status of biomass mixed firing abroad

At present, EU countries have taken various measures to reduce CO2 emissions from coal-fired power generation in terms of regulations, policies and technologies, and one of the main technical measures is coal-fired coupled biomass power generation. With specific carbon emission reduction indicators, coupled with the government's policy drive to promote coal-fired coupled biomass power generation, coal-fired coupled biomass power generation in EU countries has been well promoted and applied for more than 30 years, and valuable experience has been gained in policies, regulations and coal and biomass co-burning technology in large coal-fired power plants.

DONG Energy 2× 430.0MW supercritical combustion of a variety of fuels/biomass power plant in Copenhagen, Denmark, through the mixed burning of a variety of fuels and biomass, including a biomass reciprocating furnace boiler dedicated to burning straw, can burn 170,000 t of straw per year, the generated supercritical parameter steam and steam generated by pulverized coal furnace mixed power generation. At the same time, in the supercritical pulverized coal furnace, the mixed burning of waste wood molding particles can consume 160,000 tons of waste wood and 500,000 tons of coal every year.

Japan already has 20 coal-fired power plants planned for biomass cogeneration, with a total installed capacity of about 1 GW. The policy target for biomass power generation in 2030 is 5 GW. In 2017, Japan imported 500,000 t of wood pellets and 1.4 million t of palm kernel shells (PKS). It is estimated that by 2023, Japan's wood pellet imports will exceed 5 million tons.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller