Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Progress in the application of biomass energy power generation technology at home and abroad

来源: | 作者:佚名 | 发布时间 :2024-01-04 | 803 次浏览: | Share:

Foster Wheeler biomass circulating fluidized bed (CFB) boiler technology, the unit generation power of 3.0 ~ 47.0 MW. Its biomass fuel is mainly wood processing waste, paper waste, etc. The highest water content of waste can reach 60.0%, the smoke exhaust temperature is 140℃, and the boiler thermal efficiency is 88.0%. In early 2005, Foster Wheeler signed an agreement with Semb Corp Utilities UK Limited to supply bubbled fluidized bed boilers for the latter's 30.0 MW wood-fueled generator set.

Takuma, a Japanese company, has sold more than 500 steam boilers for power generation and heating in Japan and overseas, using wood chips, bagasse, and grain residues.

Belgium Brusselwink Energy Technology Company, as early as the 20th century to the 1930s began to burn straw boiler design and manufacturing, is one of the world's first use of biomass as fuel boiler companies. The fuel of the boiler is mainly wood waste, wood construction waste, paper waste and municipal waste. The company's inclined hydraulic mobile grate furnaces, with a thermal efficiency of up to 85.0%, are more suitable for biomass burning generators below 20.0 MW.

Bobcock&Wilcox's products include grate stoves and CFB boilers. Ge uses CFB combustion and has built a number of biomass power plants in California with a capacity of around 2.5 MW.

1.4 Development status of domestic pure fuel bio-power generation technology

China is the world's largest energy consumer, in order to reduce carbon emissions, to achieve low-carbon development, China in the adjustment of energy structure to give priority to the development of renewable energy, including biomass energy with its various natural advantages to become the focus of renewable energy development. In 2006, Shanxian County, Shandong Province, was built with a 30.0MW small biomass pure combustion power generation system with BWE biomass stoker technology, equipped with a 130 t/h vibrating stoker high-pressure boiler. China's total installed capacity of biomass combustion power generation increased from 12.1 GW in 2016 to 22.5 GW in 2019, an increase of more than 20.0% for three consecutive years, and completed the total installed capacity of biomass power generation in advance of the "13th Five-Year Plan".

In the development process of biomass pure combustion power generation technology, CFB has the advantages of wide fuel adaptability and low pollutant emission, and considering the investment in unit construction, CFB combustion mode is generally adopted in new units. As of April 2020, the number of pure biomass burning units in China is nearly 440, including 336 CFB units. After 2010, pure burning biomass units have developed in the direction of large capacity and high parameters. Several milestone projects include the commissioning of a 50.0MW biomass CFB boiler generator unit in Zhanjiang, Guangdong Province, in 2011; In 2016, the world's first 125.0MW biomass CFB boiler designed and manufactured in China was put into operation in Thailand. Since 2019, a large number of ultra-high pressure reheat biomass CFB boilers have been widely used in industry. At present, the ultra-high pressure 80.0MW biomass fluidized bed unit is being installed and commissioned.

Biomass fuels in Europe are mainly forestry wastes, while biomass fuels in China are mainly agricultural wastes, which are more prone to problems such as ash and slag accumulation and corrosion in combustion engineering. With the continuous development of the demand for biomass pure fuel power generation industry, the number of domestic enterprises with the corresponding equipment design and manufacturing capabilities has gradually increased. Whether in terms of installed capacity or unit parameters, China's biomass CFB pure fuel technology has reached the world's advanced level.

1.5 Existing problems 1.5.1 Cash flow pressure of power generation projects

Biomass pure combustion power generation technology has a great space for development in China, but there are still many constraints in the entire industry, the most prominent of which is that the business model of pure combustion biomass power generation project has a large cash flow pressure. On the one hand, the cost of biomass fuel is high, and the supply is affected by seasonal factors, and the price fluctuates greatly. On the other hand, renewable energy electricity price subsidies and the government's VAT rebate policy cause the amount of receivables to be high, and the return time is uncertain.

1.5.2 Continuous operation period to be extended

Although domestic and foreign scholars have conducted a lot of research on the ash and slag accumulation characteristics of biomass fuel, and have also improved the boiler design accordingly, the operation situation shows that the continuous operation cycle of pure biomass CFB boiler is still less than 6 months. The main reasons are the slagging of the bed material, the agglomeration of the return valve, the accumulation of ash on the convection heating surface, the corrosion of the high-temperature heating surface in the furnace and the low-temperature heating surface of the tail flue, and the greater toughness of the biomass, which is easy to cause the wear and heat of the cutting head. Impurities and fibers in biomass can also cause clogging of feeding systems and separators.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller