Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

A brief history of water treatment technology - Zero discharge

来源: | 作者:佚名 | 发布时间 :2024-01-08 | 1131 次浏览: | Share:

In the early 1970s, RCC researchers added a large number of calcium sulfate particles, with a particle size of tens of microns, to the wastewater evaporator, which formed a solid-liquid slurry with brine, and then entered the inner wall of the vertical heat exchange tube to achieve falling film evaporation. This is known as the Seeded Slurry Process. The crystal seed evaporator changes the precipitation position of calcium sulfate and other low solubility salts in the concentrated brine, so that the crystallization process preferentially occurs on the surface of suspended calcium sulfate particles, rather than the surface of the heat exchange tube, thus skillfully solving the problem of scale formation on the surface of the heat exchange tube.

At the same time, the aviation titanium material has also been used to manufacture the heat exchange tube of the wastewater evaporator, which effectively solves the problem of chloride ion corrosion; The mechanical steam compression (MVR) process has also been applied, which significantly reduces the absolute energy consumption of the evaporator and facilitates the use of electrical energy by users such as power plants. At this point, the crystal seed method MVR evaporator using titanium heat exchange tube has become the core of the first generation of zero emission treatment technology. To this day, MVR titanium tube evaporators are still standard for almost all zero-emission processes.

Evaporation ponds are an ancient technique that mimics natural processes. Because it is more limited by climatic conditions, it is subsequently replaced by spray dryers in some projects. In 1981, the Gainesville power plant in Florida was built with a zero-emission system that included a spray dryer behind the evaporator. However, the spray dryer needs to consume a large amount of hot air, the absolute energy consumption is extremely high, and the processing scale is limited, so it is gradually replaced by a forced circulation crystallizer with higher efficiency and greater operating flexibility. In this way, the combination of evaporator and crystallizer has gradually become synonymous with zero emission systems.

The third part is the development of membrane concentration technology

In the mid-late 1980s, reverse osmosis and electrodialysis desalination technology gradually matured and began to be used in the field of wastewater treatment and reuse. With the increase of application experience, people began to consider the use of reverse osmosis and electrodialysis in the evaporator before the initial concentration of wastewater, so as to reduce the treatment load of the evaporator. This is membrane concentration. Today, the advancement of membrane concentration technology largely determines the level of zero-emission technology. In 1991, the Doswell power plant in Virginia was commissioned with a zero emission system. The system reduces 56.8 t/h of wastewater to 20.2 t/h through tandem reverse electrode electrodialysis and reverse osmosis units (recovery rates of 85% and 75%, respectively) before feeding it into the evaporator and crystallizer, effectively reducing the overall investment and operating costs of the zero-emission process.

When reverse osmosis membrane concentration is used in zero emission process, the main goal of technological progress is to continuously increase the recovery rate. This consists of two phases, mainly relying on increased pretreatment levels to improve recovery before osmotic pressure becomes a limiting factor; After osmotic pressure becomes a limiting factor, the limit of osmotic pressure can be broken mainly by increasing the operating pressure or adjusting the retention characteristics of the membrane.

In 1996-1997, IndiAn-American engineer Debasish Mukhopadhyay proposed a combined reverse osmosis process characterized by ion exchange dehardening and high pH RO operation (pH>8.5). Deb has applied for a patent as the sole inventor and patentee (US5,925,255). This is the High Efficiency Reverse osmosis (HERO) process.

At the beginning of the HERO process, it was mainly used for ultra-pure water preparation projects. Through the ionization of silica at high pH values, the HERO process improves the silicon retention rate of the reverse osmosis membrane while having a higher system water recovery rate. HERO rose to prominence when Aquac used it as its main membrane concentration process for zero-emission projects. Interestingly, Texaco also filed a patent (US5,250,185) in 1992 for a combined reverse osmosis with the main features of de-hardening and high pH RO operation (pH>9.5). The combined process was initially used to remove boron from oil field production water. Veolia later bought an exclusive license to the patent and based on it launched the so-called Optimized Pretreatment and Unique Separation (OPUS) process as its main film concentration process in zero-emission projects.

As two patented membrane concentration processes, OPUS and HERO share some similarities in technical characteristics. This led to some patent disputes between them later. It is undeniable that some technical ideas in these two combined membrane concentration processes have promoted the progress of conventional membrane concentration processes, and the design of complete softening, multi-stage thickening, and interstage softening has gradually become the mainstream membrane thickening processes in the industry.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card