Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Types and prevention measures of mine geological disasters

来源: | 作者:佚名 | 发布时间 :2024-01-11 | 747 次浏览: | Share:

2.3.3 Mine fire

Pit fires are common in coal mine gangue and sulfide deposits, because coal gangue and sulfide can also oxidize and generate heat, which can cause fires. Mine fire to the surrounding environment of the atmosphere is also very serious harm, some perennial burning mines, the local air pollution is serious, the regional microclimate has changed, a large number of seedlings around the mining area died, the field is barren, the environmental situation is worrying.

2.3.4 Geothermal

In the process of mining, all the mineral resources, including coal, metal and non-metal ores, need to be mined through deep rock and soil layers, when reaching a certain depth, they will encounter the harm of rising mine temperature. Usually after the mining depth reaches 800 meters, the mine due to high sulfur content, large mining depth, and very high ground temperature will also lead to poor working environment for miners, seriously affecting normal production.

2.4 Mine environmental chemical pollution disaster

The waste residue, waste water and waste gas produced by mining and mineral processing cause environmental pollution, which is also a form of mining geological disasters. These wastes are not effectively treated, directly dumped or disordered discharge, will cause environmental pollution and public hazards. This kind of environmental disaster will also lead to soil erosion, land sand, salinization, groundwater flow and other related secondary disasters. The consequences of these pollution incidents often affect the physical conditions of people and animals for a long time, leading to the unsustainable development of the national economy, resources and environment.

2.4.1 Disaster of end warehouse and field warehouse

The mining of many mines is accompanied by the existence of mines and tailings ponds. The instability of the reservoir is mainly due to the huge damage caused by the debris flow after the tailings dam can not withstand the pressure. The dam break of tailing reservoir often occurs because of the increasing pressure on the stability of the dam body, or because of the overflow of waste ore liquid and the dam body piping. Tailings break the levee brings immeasurable disastrous consequences to the production and life of the people in the mining area, but also causes pollution and long-term harm to the local soil and water environment.

2.4.2 Water and soil environmental pollution

Mining wastewater, mine underground water, mineral processing, smelting sewage, tailings leakage, etc., will cause pollution of mine water sources and groundwater, while the existence of heavy metal pollution elements, toxic and harmful elements in the waste liquid will also remain in the soil for a long time, forming persistent environmental disasters. The amount of mining wastewater is large, most of which is too late to be treated, and is directly discharged into environmental water bodies in a disorderly manner, which directly or indirectly causes regional soil and water environmental pollution, resulting in long-term pollution of surface water, underground water sources and farmland in mining areas. Such harm is often latent, and it is more harmful.

2.4.3 Land degradation

Open-pit mining is one of the factors affecting soil erosion and land desertification. In the process of open-pit mining and excavation mining, the destruction of surface vegetation, soil slope and the expansion of tailings will lead to soil erosion and land degradation. And a lot of mining drainage, resulting in salinization of land.

3, mining geological disaster exploration methods

Because the geological disasters of mines occur in the deep, remote sensing information technology and physical exploration methods are used in the exploration.

3.1 Comprehensive method of Earth information technology

The current information technology mainly uses remote sensing set "3S" technology to grasp the possible distribution, occurrence location and region of geological disasters in time. For example, global satellite positioning system is used to accurately locate the high-risk points of geological disasters, and remote sensing satellites are used to perform superposition analysis to predict the trend of disasters.

3.2 Geophysical exploration methods

It mainly refers to the application of physical means to detect the relevant information of rock and soil circles, determine the possible disaster concomitances such as gob, fault displacement, magnetic field change, and so on, and analyze and predict geological disasters in advance. The methods of geophysical prospecting for mine geological hazards mainly include high-density resistivity method, apparent resistivity method, transient electromagnetic method, shallow seismic method and so on. These methods are important technical means to predict potential mine geological hazards.

3.3 Methods of environmental chemical investigation

In the process of mine geological disaster prevention, people often use geochemical exploration methods. For example, in the monitoring of environmental pollution in mining areas, chemical detection methods have irreplaceable advantages. The application of this method can effectively determine the pollution factors, predict the pollution trend, trace the pollution source, divide the pollution area, and provide important scientific basis and technical support for the formulation of pollution control plan.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module