Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Steel industry carbon reduction path

来源: | 作者:佚名 | 发布时间 :2024-01-12 | 646 次浏览: | Share:

EAF + scrap (C) is the preferred, mature and flexible approach, with 66% of carbon emissions in steel manufacturing coming from the blast furnace ironmaking process in the long process (BF-BOF), while the use of scrap steel can be produced using the electric furnace short process (EAF) with lower carbon emissions, and it is more economical to achieve carbon reduction through green electricity. With the increase of domestic scrap supply, it is expected that the proportion of electric furnace steel in China in the future will increase from about 10% at present to 15% in 2025, and the utilization capacity of long-process scrap may also be further improved. We predict that replacing long-process steelmaking with EAF + scrap could contribute 20% of the cumulative CO2 reduction in the steel industry by 2050. There are three main sources of scrap steel (Figure 3) :

First, domestic recycling: Given the increase in scrap steel, especially from the two major industries of machinery and automotive, it is expected that 80% of the new supply of scrap steel will come from domestic scrap recycling;

The second is to improve recycling efficiency: the government continues to guide the integration of the scrap industry and introduce favorable financial and tax policies, which will encourage steel enterprises to take the initiative to use scrap;

The approval of the national standard for Recycled Steel Raw Materials in December 2020 and the recent liberalization of high-quality scrap imports are expected to increase the overall supply of scrap and reduce scrap costs.

The reduction gap (D) still needs to be filled by more expensive and developing options such as carbon capture, utilization and storage and direct hydrogen reduction for steelmaking. The cost of hydrogen direct reduction steelmaking mainly comes from hydrogen production, the core of which is electricity price. Carbon capture, utilization and storage requires matching geological conditions, such as proximity to declining oil fields, salt water formations, etc. Therefore, we believe that specific technology deployment should be based on regional assessment and local conditions.

We suggest that Chinese steel companies consider the following four ways to make up for the reduction gap:

First, the scale of carbon capture, utilization and storage

The representative region is the Bohai Rim region (Northeast, Tianjin-Hebei, Shandong). It has centralized steel mills, which supply more than 40% of the country's steel production, as well as other high-carbon-intensity industries such as thermal power, oil and gas, and cement, which are expected to achieve large-scale infrastructure construction of carbon capture, utilization and storage, and diluted capital expenditure costs (such as pipelines). Moreover, it is close to the oil field in the decline period, and the transportation efficiency is high, and additional income can be achieved through oil.

The second is the pilot of direct reduction of hydrogen in steelmaking

The representative region is the southwest region (Sichuan, Yunnan, Chongqing, Guizhou). It has abundant green electricity and water resources, and it is possible to achieve low-cost green hydrogen production and high economy. Sweden, Germany, Austria and other countries have hydrogen steelmaking projects put into operation, and domestic steel enterprises such as Baowu, He Steel and Jiusteel have also begun to explore pilot hydrogen steelmaking.

Third, the circular economy of electric furnace + scrap steel

The representative areas are coastal areas (Zhejiang, Fujian, Guangdong). It is characterized by high demand for steel and sufficient supply of scrap steel, but the regional long process steel production capacity is low, and the current supply is mainly imported from outside the region. In the future, the scrap - electric furnace circular economy model may become the main mode of regional steel supply. On this basis, as long as the low-carbon supply of electricity is realized, carbon neutral transition can be well realized.

Fourth, focus on transitional technologies

New technologies that can not achieve carbon neutrality of steel but can significantly reduce carbon emission intensity, such as furnace top gas cycle, blast furnace hydrogen injection, direct melting reduction, etc. It will take another 30 years for the steel industry to achieve carbon neutrality, and transitional technologies can fill a part of the reduction gap and create space for the development of zero-carbon steel technology.

In addition, the steel industry continues to promote the development of ultra-low CO2 emission steelmaking process (ULCOS) technology, including biomass steelmaking, new direct reduction process (ULCORED), new melt reduction process (HISarna) and electrolytic iron ore process (ULCOWIN/ULCOLYSIS). These explorations are still some way from industrialization, but as the technology continues to develop and mature, it is possible to better support the carbon neutral transformation of the steel industry in the future.

Implications for steel enterprises

First, make bold moves to establish the carbon emission baseline of the process and look for carbon reduction opportunities

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller