Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Development status and trend of rubber and plastic sealing technology

来源: | 作者:佚名 | 发布时间 :2024-01-29 | 808 次浏览: | Share:

1.2 Sealing mechanism

The sealing mechanism is the basis of explaining how to prevent leakage and failure analysis, and it is also the basis of theoretical and numerical simulation research. On a macro level, sealing can be achieved when the contact stress of the rubber seal interface is greater than the medium pressure, and the greater the contact stress, the better the sealing effect. However, on the one hand, due to the influence of surface roughness, there will be microscopic leakage channels between the interfaces, and there will still be running, bubing, dripping and leaking phenomena. On the other hand, large contact stress will lead to the deterioration of friction and wear performance of the dynamic seal interface and accelerate seal failure. Therefore, a good seal needs to solve the contradiction between preventing leakage and reducing friction. Taking the oil seal as an example, in the process of use, it has been proven that there is a lubricating film between the contact interface, which greatly reduces the friction, and the oil seal can achieve zero leakage. Explanations for this phenomenon have been studied by scholars since the 1950s, typically including: The sealing mechanism based on the surface tension theory proposed by JAGGER in 1957, and the reverse pumping mechanism based on the tangential deformation of the rough peak on the sealing lip surface proposed by Chinese scholar Chandsen and German scholars KAMMULLER and MULLER in the 1980s. The surface tension mechanism has been shown to have limitations, while the reverse pumping mechanism is generally accepted, and the vast majority of theoretical research has been carried out on this basis. After long-term experimental research, the author of this paper has found that the reverse pumping mechanism also has great limitations, one is that its application scope depends on the radial force range of the sealing ring, and the other is that the high-speed PTFE-based oil seal does not fully conform to the scope of the mechanism. Therefore, the research on the mechanism of rubber and plastic sealing still needs continuous exploration by scholars at home and abroad.

1.3 Numerical simulation method values

Simulation method is a digital design method that relies on the development of computer technology, combines the finite element concept, and can more truly describe the physical nature of complex systems and develop. It is an effective means to study the sealing performance, and can be used to predict the sealing performance in the design stage, and optimize the parameters of the sealing structure, etc., to reduce the trial and error cycle based on experiment and experience.

The foundation of the design simulation is the establishment of the sealing performance quantitative evaluation system. The leakage is the most important index to evaluate the sealing quality, so the leakage model is always the research focus of the sealing structure simulation. Many scholars have carried out related research :GABELLI and POLL established the first numerical simulation model, using JFO boundary conditions to consider the effect of cavitation; Guo Fei et al. established the mixed lubrication model of rotary shaft lip seal; Wu Changgui et al. conducted simulation analysis of reciprocating seals based on ABAQUS to obtain more accurate contact width and lip contact pressure distribution; Huang Le, Huang Xing et al. carried out numerical simulation application research in the structural design and optimization of rubber and plastic seal products, research on polyurethane wear law, numerical simulation platform and life evaluation method, etc. Wang Jun, Zhang Fuying et al. studied the effect of roughness and reciprocating speed on dynamic reciprocating seal performance such as friction, leakage and oil film thickness based on the mixed lubrication model.

At present, the leakage models established by scholars are mainly divided into two types: molecular flow model and viscous flow model. The two models are well verified under the given working conditions. However, under the actual conditions of sealing, the constant change of the external environment will cause the mutual transformation of the molecular flow state and the viscous flow state, and any single model cannot accurately calculate the leakage amount of the actual sealing system. So far, no universally accepted theoretical model has been formed, so it is urgent to establish a unified leakage model that comprehensively considers the molecular flow and the viscous flow. Therefore, there are still some problems in the authenticity, accuracy and reliability of rubber seal simulation technology, which is mainly used as an auxiliary means to carry out experiments and design in engineering. The important research direction of rubber and plastic sealing in the future is to develop in the direction closer to the real working conditions, such as coupling more actual physical processes, considering the influencing factors of rubber and plastic sealing system under actual working conditions, and service performance changes under the whole life cycle of sealing.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card