Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Nuclear and renewable energy, not "rivals" but "teammates"

来源: | 作者:佚名 | 发布时间 :2024-01-30 | 263 次浏览: | Share:

For the power industry, the announcement of China's 2060 carbon neutral target means accelerating the leapfrog development of China's energy structure from coal-based power generation to clean and low-carbon energy. If China wants to achieve carbon neutrality by 2060, it needs to make unremitting efforts along the 1.5 ° C path, and strive to achieve 75 to 85 percent of greenhouse gas emissions by 2050. In order to achieve this goal, the share of clean energy in primary energy should exceed 85% by 2050.

With the large-scale Internet access of renewable energy such as wind and light, the moment of inertia of the power system continues to decline, and the ability of frequency modulation and peak regulation needs to be greatly strengthened. At the same time, due to the volatility and randomness of renewable energy resources, low immunity and weak support of power generation equipment, the power system will face three major challenges: efficient consumption, safe operation and mechanism. How to ensure the safety, stability and efficiency of the system while rapidly developing renewable energy has become the key to the transformation of the power system.

01

- Smart energy system with nuclear energy and renewable energy -

With the decrease of the proportion of coal power installed and the increase of the proportion of renewable energy generation, nuclear power will play an important role in the long-term safe and stable operation of the power grid. Nuclear energy relies on its stable and reliable operation, long refuelling cycle and other characteristics, as a clean baseload energy can solve the problem of large-scale power supply security and stability, nuclear energy and wind, light and other renewable energy synergistic and complementary development of the situation needs to be formed.

Therefore, starting from the actual situation of China's energy endowment and adapting to the needs of energy transformation, the collaborative intelligent system of nuclear energy and renewable energy takes into account the strategy, necessity, feasibility and economy, and can effectively reduce the abandonment of wind and light, achieve efficient allocation of resources, optimize China's energy structure, break through the constraints of fossil energy, and achieve emission reduction targets under the premise of ensuring energy security. It is an important way for China to achieve the development of clean and low-carbon energy and energy transformation under China's "30·60 goal", which has great value for China to achieve ecological civilization construction and lead global climate governance, and is an important choice to ensure the coordinated development of energy supply, economic development and ecological environment.

Nuclear energy and renewable energy collaborative intelligent system is a smart energy system with power system as the core, smart grid as the basis, nuclear energy and renewable energy as the main body, with an appropriate amount of hydropower and thermal power, to achieve cold, hot, gas, water, electricity and other energy complementary, improve energy efficiency.

The nuclear and renewable energy collaborative intelligent system architecture consists of four main parts: development of the infrastructure system, including nuclear and renewable energy infrastructure; Technical support system, including distributed energy technology, smart grid technology, big data technology, Internet of Things technology and multi-energy complementary technology; Consumption systems, including energy trading, energy services, decision support and optimization control; Standard system, including demand response, energy coordination, energy storage, energy prices, energy trading, network security and a series of standards.

By deeply integrating modern information technology, intelligent control and optimization technology with modern energy supply, storage and transportation, and consumption technology, the system provides a more scientific forecasting, decision-making and interactive platform for energy optimization management and multi-function collaboration, and creates a new way for consumers to obtain energy, store energy and even sell energy. We will promote the increase in the proportion of nuclear energy and renewable energy and the adjustment and optimization of the energy structure, promote the transformation of users' energy use concepts and the improvement of terminal energy efficiency, and achieve energy security, clean, economical and sustainable development under the constraints of energy conservation and emission reduction targets.

In this system, the comprehensive utilization of nuclear energy can provide a variety of secondary energy. For example, in the case that the scenery can not provide effective power supply, nuclear energy exerts the baseload energy characteristics to provide power supply guarantee; In the case that wind provides an effective power supply, nuclear energy through comprehensive utilization, the energy is converted into hydrogen, fresh water, molten salt heat storage and other ways of storage and transportation, improve the overall economy and utilization rate of the system.

Nuclear energy and renewable energy collaborative intelligent system adopts advanced nuclear energy and renewable energy supply and energy conversion technology, energy transmission technology, energy consumption technology, intelligent processing technology, comprehensive system optimization technology, to achieve independent, safe, clean, diversified and efficient energy supply and consumption. The main features of the system include safety, cleanliness, diversity and economy.

Safety: The total amount of energy in the collaborative intelligent system of nuclear energy and renewable energy is stable and abundant, and the sustainability is strong, and the energy supply in the system is low in external dependence.

Clean: The energy supply in the collaborative intelligent system of nuclear energy and renewable energy is low-carbon energy and environmentally friendly.

Diversity: The continuity of energy supply in the collaborative intelligent system of nuclear energy and renewable energy is strong. As the base load, nuclear energy supplements each other through cold, hot, gas, water, electricity and other energy sources, and is applied flexibly to ensure a variety of energy supplies.

Economy: As a mature support power supply, nuclear energy has achieved technical independence, and its cost is controllable and will gradually decrease with the expansion of application scale. Wind, light and other renewable energy sources have also become economically competitive energy varieties. At the same time, the power transmission loss and energy loss in the collaborative intelligent system of nuclear energy and renewable energy are low.

In order to realize the intelligent collaboration between nuclear energy and renewable energy, the flexible operation capability of nuclear power is the basic guarantee. At present, China's three generations of nuclear power generally have a certain flexible operation capability, and the high energy density and adjustability of nuclear power can escort renewable energy online to meet the needs of safe and stable power grid operation.

02

- Nuclear and renewable energy collaborative application scenarios -

1. Energy base delivery scenario

By the end of the third quarter of 2020, the total installed capacity of new energy power generation in Qinghai exceeded 57.1%. Due to the inherent randomness, volatility and intermittency characteristics of renewable energy such as wind and light, its large-scale grid connection has an impact on the power grid, coupled with the shortage of peak load capacity of the power grid, resulting in grid absorption difficulties, so the new energy base must consider stable base load power supply when it is connected to the grid. In addition, the long-term oversupply of Qinghai province's power market, in order to solve the problem of large-scale new energy consumption, we must rely on the delivery channel. Therefore, the development model of "clean energy base + delivery channel + matched peak power supply" has become the only way to develop new energy bases.

Qinghai Province plans to build UHV DC channels for its second large-scale new energy base, but due to the inability to solve the problem of power support points, the planning is slow to land. In order to make full use of the best light resources and large areas of desertification land in the country, and promote the construction of comprehensive pilot projects for the nearby consumption of renewable energy in the Qaidam circular economy Pilot Zone, it can be considered to choose a suitable location to build nuclear power units, provide stable support power points for the new energy base, and promote the construction of new energy bases and delivery channels. This application scenario can be extended to regions with abundant renewable energy resources and unbalanced energy supply and demand such as Inner Mongolia and Xinjiang.

2. Comprehensive energy utilization scenario

Shandong Province is an important region of China's coastal economic belt, and the clean, efficient and safe energy system is the solid foundation for its rapid and stable development. By the end of 2020, the installed capacity of new energy and renewable energy in the province has reached 48 million kilowatts, accounting for 30% of the total installed capacity of electricity. At the same time, the planning and construction of nuclear power has been steadily advanced, and the cumulative power generation has exceeded 48.5 billion KWH, and the installed power capacity of nuclear power under construction in the province has reached 5.7 million kW. Shandong Province's geographical conditions and energy endowment have the natural conditions for the development of renewable energy and nuclear energy smart synergy.

While generating electricity, the Haiyang nuclear power Plant that has been built not only meets the clean heating needs of nearly 700,000 square meters of residents around it through nuclear heating, but also participates in the regulation of offshore wind power to make up for the intermittent shortcomings of offshore wind power to a certain extent.

For the scenarios in coastal areas, the comprehensive utilization system of nuclear energy can also be promoted, and through the innovation of the thermal system of nuclear power plants, various functions such as power generation, hydrogen production, seawater desalination, heating, cooling, steam supply and energy storage can be integrated and coordinated. The energy released after nuclear fission is initially shown in the form of heat energy, and the direct comprehensive utilization of nuclear heat energy can effectively improve the economy of the energy system. In addition, nuclear energy hydrogen production has no greenhouse gas emissions, high efficiency and many other advantages, nuclear energy desalination can ensure the lack of coastal areas of water safety, nuclear energy heating and cooling can provide clean economic residential heating and industrial heat, cold, to meet the regional economic development and people's needs of various forms of energy use.

3. Isolated network operation scenario

For remote areas such as isolated islands at sea far from the mainland, due to special geographical factors, the power loss from the main grid is large and the cost is high, which requires the construction of off-grid energy supply system according to local conditions.

As a stable, controllable and high energy density energy form, nuclear energy is the best choice of baseload energy in this scenario mode. By combining any one or several types of small nuclear energy systems with solar energy, wind energy, ocean energy, etc., combined with comprehensive utilization technology of nuclear energy, a more secure, economical and efficient energy supply can be obtained.

In this mode, on the one hand, the supply side of the scene uses nuclear energy and renewable energy to generate electricity together to achieve a stable supply of green power; on the other hand, zero-carbon replacement is carried out for terminal energy equipment, such as electrification of urban household energy terminals; transportation, logistics, ship terminals, municipal sanitation and other systems adopt hydrogen energy operation, and electrified replacement of cooling, heating and power terminals is fully realized. It can achieve a zero-carbon intelligent and efficient energy system for the isolated network operation scenario.


  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board