Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

AI pharmaceuticals are maturing, and data sharing needs to be broken

来源: | 作者:佚名 | 发布时间 :2024-01-31 | 771 次浏览: | Share:

In early 2023, when ChatGPT (a chatbot program developed by OpenAI in the United States, released on November 30, 2022) swept the world, AI pharmaceuticals, that is, artificial intelligence-driven drug research and development, also stood on the new outlet.

According to AI consulting firm Deep Pharma Intelligence, as of December 2022, the total investment of 800 AI pharmaceutical companies worldwide reached 5.93 billion US dollars, a 27-fold increase in nine years. In the first quarter of this year, there were more than 28 investments in AI pharmaceutical companies, with an average investment of $38 million.

On the map of AI pharmaceuticals in China, Shanghai Zhangjiang, the "old pharmaceutical valley", occupies a leading position, leading the country from the number of enterprises to the scale of pipelines. According to the publicly disclosed information statistics of Zhangjiang Group, there are a total of 99 enterprises in the country involved in the field of AI+ medicine, of which 34 are in Shanghai, and 25 Zhangjiang enterprises account for 25% in the country; There are 83 and 30 projects of AI+ pharmaceutical products in the preclinical research stage and clinical trial stage, respectively, while Zhangjiang accounts for 47% and 40% in the country, respectively.

In October 2021, under the initiative of Chen Kaixian, Jiang Hualiang, Rao Zi and three academicians of the Chinese Academy of Sciences, Zhangjiang AI New Drug Alliance came into being. By 2025, Zhangjiang Pharmaceutical Valley's "AI smart drug ecology" is expected to gather 300 active institutions, 30 innovation consortiums and 30 enabling platforms, and AI is expected to help add 30 new Class A new drug pipelines (pipelines, referring to a number of drugs in the development stage of pharmaceutical companies, including preclinical and clinical research) every year.

Today, the power of AI to accelerate target and drug discovery has been recognized by all, and the real test is still in the clinical stage. After Exscientia stopped developing the world's first AI-designed drug to enter clinical trials, the latest bad news is that Benevolent AI, another British AI pharmaceutical leader, recently announced that a drug candidate for the treatment of atopic dermatitis failed to meet a secondary efficacy endpoint in a phase II clinical trial.

In the future, which AI-assisted design or even designed from scratch drugs can be the first to successfully cross the "valley of death" of Phase II clinical trials, only time can give the answer. But there is no denying that as more and more pharmaceutical companies open their arms to AI, AI-enabled drug design is already unstoppable.

AI pharmaceutical "head on"

The biopharmaceutical industry has long been known as the "Double Ten" rule, that from the start of research and development of a new drug to the final approval of the market takes an average of 10 years, the investment cost of about $1 billion - many industry reports estimate the figure is several times more. In addition to the long cycle times and high costs, pharmaceuticals are a high-risk business, with industry estimates putting the global success rate of new drug discovery at between 2% and 15%.

Why is it so hard to develop new drugs? On the one hand, the human proteome, the difficult drug targets account for more than 75%, conventional targets are about to be developed, the track is particularly crowded; On the other hand, a drug candidate must meet a combination of conditions in multiple dimensions: solubility, activity/selectivity, toxicity, metabolism, pharmacokinetics/efficacy, and composibility.

Today, 60 percent of the disease has no effective drug, and 50 to 70 percent of patients do not respond to blockbuster drugs. A large number of clinical needs are not being met, and the industry urgently needs new drug development tools and paradigms, so AI has attracted the attention of a large number of entrepreneurs and investors.

Before 2012, the application of AI technology in drug research and development was still in the early stage of exploration, mainly including target identification, drug molecular design, virtual screening and so on. In the following five years, with the increasing maturity of machine learning, deep learning and other technologies, the advantages of AI application in drug discovery are expanding, and the scope of application is also extended to clinical trial design and prediction, "old drugs and new" optimization design scenarios.

2017 is regarded as the starting point of AI pharmaceutical industrialization. In September of that year, American AI pharmaceutical startup Atomwise announced that it had received $45 million in financing, becoming the largest financing in the AI pharmaceutical field. Iconic AI pharmaceutical companies, such as Exscientia in the UK and BenevolentAI in the United States, also made important breakthroughs in this year, and small molecule drug candidates developed by AI (small molecule drugs mainly refer to chemical synthetic drugs) began to emerge.

Insilico Medicine, headquartered in Hong Kong, China, is the first company in the world to explore the use of generative adversarial network (GAN) and generative reinforcement learning (RL) artificial intelligence technology for drug discovery, and has become one of the leaders in the field of AI pharmaceutical, leading drug research and development center in Shanghai is located in Zhangjiang. In February 2021, InSI announced that for the first time in the world, artificial intelligence was used to discover INS001-055, a drug candidate with a new target and a new molecular structure, for the treatment of idiopathic pulmonary fibrosis.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module