Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Electrification of mining equipment and utilization of renewable energy sources promote sustainable mine development

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 733 次浏览: | Share:

Electrification of mining equipment and utilization of renewable energy sources promote sustainable mine development

Trend one

In the context of carbon neutrality, large mining companies around the world have actively deployed and implemented the electrification of mining equipment to enhance their sustainable development capabilities

Under the background of "double carbon", the world's large mining companies have put forward their own climate change solutions. Rio Tinto's Climate Change 2020 Report Outlines its strategy and pathway to a low-carbon future across all operations in compliance with the Paris Agreement by reducing absolute emissions by 15 per cent in 2030 and emissions intensity by 30 per cent relative to 2018 baseline levels, as well as achieving a net zero emissions target by 2050. Chile's national Copper industry's 2030 sustainability plan promises to reduce greenhouse gas emissions by 70 percent by establishing what it calls a "100 percent clean energy matrix," including electrifying all underground production and transportation facilities and actively participating in the search for new clean energy sources, such as hydrogen. Russian Multi-Metals' first Climate Change Report, published in 2021, proposes to achieve a 30% reduction in greenhouse gas emission intensity and a 35% reduction in absolute emissions by 2030, relative to the 2019 baseline level.

According to a recent survey of global mining industry executives, 87% believe all existing mines will be fully electrified within 20 years, while 60% believe the next generation of mines will be fully electrified. Some of the world's largest mining companies, such as Vale, Chile's National Copper and Barrick Gold, are experimenting with fully battery-powered underground mining equipment. Among them, South African precious metals miner Sibanye-Stillwater is testing Artisan at its Stillwater and East Boulder platinum group metals mines in Montana, USA The A4 underground scraper of Vehicles (Sandvik Mining & Rock Technology's Loading & Transport division), with a payload capacity of 4 tonnes, offers the best line of sight in a compact space and a 20% reduction in turning radius for greater maneuverability. The device uses a lithium iron phosphate battery motor that can produce 150 kilowatts of power and 800 nm of torque. Compared to other diesel-powered scrapers, the A4 has 3.5 times more power and more torque, while producing only one eighth of the heat. LKAB's Kiruna Iron mine is one of the most automated/intelligent mines in the world, although the six unmanned scrapers that have been remotely operated at the same time are still diesel-powered. However, LKAB plans to conduct field tests on Epitop's 14-ton ST14 battery-powered scraper and Sandvik's 15-ton 625IE battery-powered scraper in 2021. In February 2021, Canadian mining company New Gold announced that it would deploy a battery-powered mining fleet at its New Afton underground copper-gold mine in British Columbia, Canada. These include Sandvik's 50-ton Z50 battery-powered mining truck, the first 18-ton LH518B battery-powered scraper deployed in North America and the world, and the new DS412ie anchor rig. In March of the same year, Fortescu Metals Group announced an agreement with Williams Advanced Engineering for the design, construction, testing and integration of battery systems to power mining trucks, as well as the development of fast charging devices, in which the battery system will be installed on a prototype 240-ton transport truck developed by Fortescu. The company is also conducting performance tests at its mines in Australia's Pilbara mines, where the next stage will consider hydrogen fuel cell power systems. In July of the same year, Epito announced that Ivanhoe Mines' South African subsidiary had ordered several Boomer M2 battery-powered drilling RIGS and Scooptram ST14 battery-powered loaders for its Platreef project.

Chile is a major mining country, and mining production accounts for 14% of the country's total greenhouse gas emissions. In July 2020, Chile's Economic Development Agency, Australia's Commonwealth Scientific and Industrial Research Organization Chile International Centre of Excellence, France's ENGIE Group and Australia's Mining3 announced the creation of the HYDRA project, which aims to develop fuel cell mining trucks equipped with hybrid power systems for Chile's mining industry. Using advanced lithium batteries and hydrogen fuel cells (green hydrogen) to replace the traditional diesel power system. The HYDRA project is part of a new round of national emission reduction policies in Chile, after the Chilean government and the country's mining sector agreed on a "Green mining plan" aimed at helping the country meet its 2050 carbon neutral commitment by decarbonizing mining production. The HYDRA project will start in December 2020 for 18 months and is expected to complete the development of the green powered truck prototype by the end of April 2021. By June 2021, the project hopes to achieve the following goals: (1) Computer simulations demonstrate that the mechanical and electrical design can improve the system efficiency by at least 10%; (2) Comparative analysis of cost and benefit between diesel power system and HYDRA system; ③ Contact with major mining truck original equipment manufacturers including Komatsu, Caterpillar, etc., integrate the developed system into the actual truck, and plan to conduct field testing; Legal and technical analysis in accordance with the regulations of the Chilean hydrogen energy and electric power system; ⑤ Consider a business model for the large-scale application of HYDRA technology in the mining industry.

  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card