Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Use of liquefied natural gas

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 1124 次浏览: | Share:

(4) Zhongyuan Oil Field liquefied natural gas plant

Zhongyuan Oilfield has built the largest LNG plant in China, with a raw gas scale of 26.65×104m3/d, a liquefaction capacity of 10×104m3/d, a storage capacity of 1200m3 and a liquefaction rate of 37.5%. At present, on the basis of fully absorbing foreign advanced technology, combined with the situation of relevant equipment at home and abroad, mainly for the characteristics of their own gas source, and research LNG process technology. The process adopts the common molecular sieve adsorption method for dehydration, and the liquefaction process uses propane precooling + ethylene precooling + throttling.

When the raw gas volume is 30×104m3/d, the yield is as high as 51.4% and the energy consumption is 0.13Kwh/Nm3. Its advantage is that each refrigeration system is relatively independent, reliability, flexibility. However, the process is relatively complex, requiring two kinds of refrigeration media and circulation, and the equipment investment is high. The liquefaction cost is low because the plant makes full use of the pressure energy of natural gas in oil field gas Wells.

(5) Small liquefied natural gas unit of Tianjin University

Compared with large LNG plants, small LNG plants not only have raw material advantages, market advantages, but also have low investment, relocation and flexibility. LNG plant mainly uses amine solvent system to pretreat natural gas and remove CO2 and other impurities; Molecular sieve dehydration; Liquefy several steps. The device adopts a single-stage mixed refrigeration system; Compressors for closed loop refrigeration cycles compress refrigerant. The single-stage refrigerant mixing process is simple and efficient, and is suitable for small LNG plants.

The compressor can be driven by gas turbines or electric motors. Where electricity prices are low, priority can be given to electric motors (low cost, simple maintenance). In areas where fuel gas prices are low, gas turbines will be a better option. The economic evaluation results show that the investment cost of liquefaction plants with gas turbine drives is 2 million to 4 million US dollars higher than that of electric motors. According to the cost estimation of a set of 15×106ft3/d liquefaction unit, the storage tank volume of the LNG project for peaking is 100,000 m3, while the LNG project for vehicle fuel only needs 700m3 storage tank, resulting in the final cost of LNG for peaking is 2.03~2.11 USD /1000ft3. However, the cost of automotive LNG is only 0.98~0.99 USD /1000ft3 [8].

(6) New liquefaction technology of Southwest Petroleum University

The process processes 3.0×104m3 of natural gas per day, which is mainly composed of raw gas (CH4:95.28%, CO2:2.9%) deCO2, dehydration, propane precooling, gas wave refrigerator refrigeration and cyclic compression systems. Using SRK equation of state as the basic model, natural gas liquefaction process software was developed. Natural gas compressor is powered by natural gas engine, and small load electric equipment is powered by natural gas generator set, which solves the problem of no electricity or power shortage in remote areas. Since there is no gathering pipeline available in remote areas, the unliquefied natural gas is cycled and compressed to improve the liquefaction rate of the whole unit.

CO2 was removed by the ethanolamine process (MK-4). Due to the small processing capacity, the absorption tower and the regeneration tower of carbon dioxide removal should use high-efficiency packing tower. Due to the mixed refrigerant, there is no mature technology and experience in design and operation management in China, and the instrument control system is more complex. At the same time, considering the high methane content in the raw gas, the pressure energy can be used. Therefore, natural gas direct expansion refrigeration is used as a natural gas liquefaction cycle process. Gas wave refrigeration belongs to isentropic expansion process. The gas wave refrigeration machine is developed on the basis of the hot separator and the theory of gas wave motion. It absorbs some advantages of the thermal separator in structure, and increases the key device of the microwave absorption cavity, which is obviously different from the thermal separator in principle, and makes more effective use of the pressure of the gas, and improves the refrigeration efficiency.

(7) Harbin Gas Engineering Design and Research Institute and Harbin Institute of Technology

The LNG system mainly includes natural gas pretreatment, low temperature liquefaction of natural gas, low temperature storage of natural gas and gas gasification and output. The treated natural gas is liquefied through a multi-stage mono-mixture condensation process, and the refrigeration compressor is powered by a natural gas engine. The LNG storage tank is a bimetallic walled insulated tank, the inner tank and the outer tank are made of nickel steel and carbon steel respectively.

Circulating gas compressors are generally driven by natural gas, which can save operating costs and make the investment quickly recovered. Compressors generally use non-lubricated special design to avoid natural gas being contaminated by lubricating oil. The turbine is equipped with an electronic speed control system, and the final blades of the new turbine are made of drill alloy, which improves the mechanical operation. The new clutch installed on the turbine compressor is flexible, they are relatively reliable, and can also adjust the clearance.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card