Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Industrial technology for sewage treatment

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 661 次浏览: | Share:

Process technology;

Biological treatment

The treatment processes used in biological treatment are: Oxidation pond method, Carrousel, alternating type, Orbal, Phostrip method, Phoredox method, SBR method, AB method, biological fluidized bed method, ICEAS method, DAT-IAT method, CASS (CAST, CASP) method, UNITANK method, MSBR method, A/O method, A2/O, A3/O, UCT method, ⅥP method, UASB method, integrated biochemical method, aerobic wastewater treatment, biological fluidized bed wastewater treatment, immobilized cell technology wastewater treatment, biological iron method, auxin method, integrated biochemical filtration method, increasing flow carrier method, deep well aeration Gas method, biological filter method, biological turntable method, tower biological filter biofilm method, etc., the first, second and deep treatment method of urban sewage.

Treatment of phosphorus in sewage

The phenomenon of water eutrophication has led to the deterioration of water quality and seriously affected people's production and life. Nitrogen and phosphorus are both important nutrients of water organisms, but aquatic organisms such as algae are more sensitive to phosphorus. To solve the problem of water eutrophication, phosphorus should be removed from sewage first. With the progress of science and the continuous improvement of people's environmental awareness, the sustainable development of phosphorus removal technology has become a development trend in the field of wastewater treatment research.

1. Chemical phosphorus removal technology The basic principle of chemical phosphorus removal is to form insoluble phosphate precipitates by adding chemical agents, and finally remove phosphorus from sewage by solid-liquid separation. His main research direction focuses on the optimal selection of chemical agents. Chemical precipitation method is a practical and effective technology, its advantages are: simple operation, good phosphorus removal effect, treatment efficiency of up to 80% ~ 90%, and the effect is stable, will not re-put phosphorus and lead to secondary pollution, when the influent concentration fluctuation, there is still a good phosphorus removal effect. The disadvantages are that the method uses a large amount of drugs, the treatment cost is high, and a large amount of chemical sludge is produced. Generally divided into two types: chemical precipitation method and chemical flocculation method:

Chemical precipitation method:

Phosphorus removal by chemical precipitation mainly refers to the method of removing phosphorus in wastewater by using metal ions produced by calcium salt, iron salt and aluminum salt and phosphoric acid to generate insoluble phosphate precipitate. The most commonly used are lime, aluminum sulfate, sodium aluminate, ferric chloride, ferric sulfate, ferrous sulfate, and ferrous chloride.

Chemical flocculation method

Phosphorus removal by chemical coagulation is to convert soluble phosphorus into suspended phosphorus and detain it. Most of the phosphorus in the water is dissolved inorganic combined phosphorus, mainly orthophosphate and thick cyclic phosphate of detergent, and the remaining small part is organic combined phosphorus that exists in dissolved and non-dissolved states. Condensed cyclic phosphates and organic combined phosphates are generally converted to orthophosphates in biological processing. Phosphoric acid has the most prominent effect on the hydrolysis behavior of iron ion among various anions, and it can replace part of the hydroxyl group bound with iron ion to form a complex complex of basic iron phosphate and change the hydrolysis path of iron ion.

2. Biological phosphorus removal technology

Biological phosphorus removal process is an economic phosphorus removal method, which can effectively remove phosphorus without affecting the removal of total nitrogen, low operating costs, and can avoid the chemical phosphorus removal method to produce a large amount of chemical sludge. Among them, denitrification and phosphorus removal technology is the focus of current research. The biological uptake/removal of phosphorus by denitrifying bacteria was confirmed in a collaborative study by researchers at the Technical University of Delft and the University of Tokyo, named "Denitrifying phosphorus removal". Denitrifying phosphorus removal bacteria (DPB) can use O2 or NO3 as electron acceptors. Under anaerobic conditions, COD can be degraded into low molecular fatty acids such as acetic acid (HAC) for absorption and propagation by DPB, while hydrolyzing intracellular Poly-P and releasing it in the form of inorganic phosphate. Under hypoxic condition, DPB uses nitric nitrogen as electron acceptor for biological phosphorus uptake, and nitric nitrogen is reduced to nitrogen. The denitrifying phosphorus removal process combined with DPB can save a considerable amount of COD and aeration capacity, but also means less cell synthesis. Compared with conventional biological denitrification and phosphorus removal process, the COD required for denitrification and phosphorus removal is reduced by 30%(calculated by domestic sewage). Denitrification and phosphorus removal technology has been gradually applied from basic research to practical engineering. Typical processes that meet the environment and substrate requirements of DPB are single-stage processes (BCFS) and two-stage processes (A2N).

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card