Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

MBR process for sewage treatment

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 554 次浏览: | Share:

The SBR process also has unique features. The overall advantages and disadvantages are as follows:

advantage

The processing process is simple:

There are five stages in the process: water intake, aeration, precipitation, drainage and standby.

Intermittent aeration, unstable biochemical reaction instead of steady biochemical reaction,

Static ideal precipitation replaces traditional dynamic precipitation.

Small number of structures, low cost:

There is no need to set up a primary settling site, and there is no need to set up a secondary settling site, and the sludge return facility, regulation tank and primary settling tank can also be omitted.

Easy operation and maintenance management. The disadvantages of low efficiency and large footprint of traditional anaerobic reactor are avoided.

Simple structure

The combined construction method is beneficial to the expansion and renovation of the wastewater treatment plant.

The effluent water quality after treatment is good.

Good automatic control system, good nitrogen and phosphorus removal effect, wastewater discharge standards, several said that the average removal rate of CODCr can reach more than 94%, stronger than single-stage aerobic treatment process.

Orderly and intermittent operation on the run.

It is especially suitable for the treatment of wastewater which is difficult to biodegrade.

The problem that the acid accumulation in the hydrolysis and acidification stage of UASB and other high-efficiency anaerobic reactors is easy to inhibit the treatment efficiency of methanogenic stage is solved.

Small footprint, low energy consumption, investment, convenient operation and management

shortcoming

It relies heavily on modern automation control technology.

The degree of automation requires higher operation, management and maintenance, and the quality of operation and management personnel is required to be higher.

If manual operation is used, the aeration plate will be easily blocked due to the complicated operation of the water inlet and outlet process.

Scope of application

Small and medium-sized urban domestic sewage and industrial sewage of factories and mining enterprises, especially in places where intermittent discharge and flow change greatly.

Places that require higher water quality, such as scenic areas, lakes and harbors, not only need to remove organic matter, but also require the removal of phosphorus and nitrogen from the water to prevent eutrophication of rivers and lakes.

Where water is scarce. The SBR system can be used for physical and chemical treatment after biological treatment, and does not require additional facilities to facilitate water recycling.

Where land is tight.

The renovation of the existing continuous flow sewage treatment plant.

It is very suitable for the treatment of small water volume, intermittent discharge of industrial sewage and the treatment of dispersed point source pollution.

SBR design essentials

1. Determination of the operating cycle (T)

The operation cycle of SBR is determined by water filling time, reaction time, precipitation time, drainage time and idle time. Water filling time (tv) should have an optimal value. As mentioned above, the filling time should be determined according to the specific water quality and the aeration method used during operation. When the limited aeration method is used and the concentration of pollutants in the water is high, the water filling time should be appropriately longer. When the non-limited aeration method is used and the concentration of pollutants in the water is low, the water filling time can be appropriately shortened. The water filling time is generally 1 to 4 hours. Reaction time (tR) is a very important process design parameter to determine the volume of SBR reactor, and its value also depends on the nature of sewage during operation, the concentration of sludge in the reactor and the aeration method. For domestic sewage easily treated sewage, the reaction time can be shorter, and on the contrary, for sewage containing difficult to degrade substances or toxic substances, the reaction time can be appropriately taken longer. Generally in 2 ~ 8h. Precipitation drainage time (tS+D) is generally designed according to 2 ~ 4h. Idle time (tE) is generally designed in 2h.

One cycle takes time tC≥tR+tS+tD

Number of cycles n=24/tC

2. Calculation of reactor volume

Assuming that the amount of sewage in each series is q, the amount of sewage entering each reaction tank in each cycle is q/n·N. The volume of each reaction tank is:

V: Capacity of each reaction tank

1/m: discharge ratio

n: Number of cycles (cycles /d)

N: Number of reaction pools per series

q: Water intake per series (designed maximum daily sewage volume) (m3/d)

3. Aeration system

In the sequential batch activated sludge method, the capacity of the aeration unit should be the oxygen demand that can be supplied within the specified aeration time. In the design, the BOD per unit of inlet water is 0.5 ~ 1.5kgO2/kgBOD during high load operation and 1.5 ~ 2.5kgO2/kgBOD during low load operation.

In the sequencing batch activated sludge process, because the activated sludge is aerated and precipitated in the same reaction tank, the aeration unit must be not easily blocked, and the stirring performance of the reaction tank should be considered. Commonly used aeration systems include gas-liquid mixed injection, mechanical mixing, perforated aerator, microporous aerator, generally choose jet aeration, because it has a mixing effect in the non-aeration style, while avoiding blockage.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card