Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

MBR process for sewage treatment

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 239 次浏览: | Share:

4. Drainage system

(1) The supernatant removal device should be able to discharge the supernatant within the set drainage time without the activated sludge floating, and the discharge methods are gravity discharge and pump discharge.

(2) In order to prevent the failure of the supernatant discharge device, an accident drainage device should be set up.

(3) In the supernatant discharge device, a mechanism to prevent scum outflow should be provided.

The sequencing batch activated sludge discharge device should discharge the supernatant separated from the activated sludge during the precipitation and drainage period, and has the following characteristics:

1) Should be able to neither disturb the settling sludge, nor make the sludge float, according to the specified flow rate discharge supernatant. (quantitative drainage)

2) In order to obtain clear treated water after separation, the water collection mechanism should be as close to the water surface as possible, and it can be drained with the water level change after the supernatant discharge. (Water level tracking performance)

3) The action of drainage and stopping drainage should be smooth, accurate, durable and reliable. (Reliability)

The structural form of the drainage device, according to the different ways of lifting, there are float type, mechanical type and fixed type without lifting.

5. Mud discharge equipment

Design sludge dry solid quantity = design sewage quantity × design influent SS concentration × sludge yield /1000

Sludge production is calculated at 1 kg per 1 kgSS inflow in high load operation (0.1 ~ 0.4 kg-bod /kg-ss·d) and 0.75 kg per 1 kgSS inflow in low load operation (0.03 ~ 0.1 kg-bod /kg-ss·d).

The sludge concentration of 2 ~ 3% can be obtained by setting a simple sludge concentration tank in the reaction tank. Because the sequencing batch activated sludge method does not have a primary sedimentation tank, it is easy to flow more debris, and the sludge pump should be a pump type that is not easy to plug.

Main parameters of SBR design

The design parameters of the sequencing batch activated sludge method must be properly determined considering the regional characteristics and design conditions of the treatment plant (land area, maintenance management, treatment water quality indicators, etc.).

The following values shall prevail in the design parameters for facility design:

Parameter number of the entry

BOD-SS load (kg-BOD/kg-ss·d) 0.03 ~ 0.4

MLSS(mg/l) 1500 ~ 5000

Discharge ratio (1/m) 1/2 ~ 1/6

Safe height ε(cm)(minimum water depth above the activated sludge interface) 50 or more

Sequencing batch activated sludge process is a process that can operate in the range of low load (equivalent to oxidation ditch method) to high load (equivalent to standard activated sludge method) depending on the organic load. The BOD-SS load of the sequencing batch activated sludge process is defined as follows because the aeration time is considered as the reaction time:

QS: Sewage intake (m3/d)

CS: Average influent BOD5(mg/l)

CA: Average MLSS concentration in aeration tank (mg/l)

V: aeration tank volume

e: aeration time ratio e=n·TA/24

n: number of cycles TA: aeration time of a cycle

The loading conditions of the sequencing batch activated sludge method are determined according to the ratio of the volume of the reaction tank to the amount of sewage water in each cycle and the number of cycles per day. In addition, in the sequencing batch activated sludge method, because the concentration of MLSS in the tank is easy to maintain a good concentration, the organic load can also be adjusted through the change of the concentration of MLSS. Furthermore, because the aeration time is easy to adjust, the organic load can also be adjusted by changing the aeration time.

In nitrogen removal and desulphurization, in addition to organic load, it is necessary to study the discharge ratio, the number of cycles, and the daily aeration time.

In facilities with limited land area, it is suitable for high-load operation and small-scale facilities with small inlet flow and large load changes, it is best to run at low load. Therefore, the effective way is to operate at low load in the early stage of production, and with the increase of water volume, it can also be operated at high load.

Characteristics under different load conditions

Organic load conditions (water inlet conditions) High load operation low load operation

Intermittent water intake Intermittent water intake, continuous

Operating conditions BOD-SS load (kg-BOD/kg-ss·d) 0.1 ~ 0.4 0.03 ~ 0.1

Number of cycles large (3 ~ 4) Small (2 ~ 3)

Discharge is smaller than big

Treatment characteristics Organic matter removal treatment water BOD<20mg/l removal rate is relatively high

Nitrogen removal is low and high

Dephosphorization high is low

How much sludge production

Maintenance management is more adaptable to load changes and more flexible in operation than low load difference

The volume of land area reaction pond is small, and the volume of provincial reaction pond is large

Scope of application can effectively treat sewage above medium scale, suitable for facilities with a treatment scale of about 2000m3/d or more suitable for small sewage treatment plants, the treatment scale of about 2000m3/d or less, suitable for facilities that do not require nitrogen removal.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board