Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What are the advanced sewage treatment technologies today?

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 262 次浏览: | Share:

Membrane technology Membrane separation methods are commonly used microfiltration, nanofiltration, ultrafiltration and reverse osmosis and other technologies. Because membrane technology does not introduce other impurities in the treatment process, it can realize the separation of large molecules and small molecules, so it is often used for the recovery of various large molecular raw materials, such as the use of ultrafiltration technology to recover polyvinyl alcohol slurry of printing and dyeing wastewater. At present, the main difficulties that limit the application and popularization of membrane technology are high cost, short life, easy to be polluted and blocked by scale. With the development of membrane production technology, membrane technology will be more and more applied in the field of wastewater treatment. Magnetic separation technology Magnetic separation technology is a new water treatment technology developed in recent years, which uses the magnetic separation of impurity particles in wastewater. For non-magnetic or weakly magnetic particles in water, magnetic inoculation technology can be used to make them magnetic.

There are three methods of magnetic separation technology used in wastewater treatment: direct magnetic separation method, indirect magnetic separation method and microbial magnetic separation method. At present, the magnetization technology mainly includes magnetic agglomeration technology, ferric salt co-sedimentation technology, iron powder method, ferrite method, etc. The representative magnetic separation equipment is disk magnetic separator and high gradient magnetic filter. At present, magnetic separation technology is still in the laboratory research stage and can not be applied to practical engineering practice. The typical Fenton reagent of Fenton and Fenton-like oxidation processes is produced by the decomposition of H2O2 catalyzed by Fe2+ to produce •OH, which leads to the oxidative degradation of organic matter. As Fenton process takes a long time to treat wastewater, it uses a large number of test doses, and excessive Fe2+ will increase COD in the treated wastewater and produce secondary pollution. In recent years, ultraviolet light and visible light have been introduced into the Fenton system, and other transition metals have been studied to replace Fe2+. These methods can significantly enhance the oxidative degradation ability of Fenton reagent on organic matter, reduce the amount of Fenton reagent and reduce the treatment cost, collectively referred to as Fenton-like reaction. Fenton process has mild reaction conditions, simple equipment and wide application range. It can be used as a separate treatment technology, or combined with other methods, such as coagulation precipitation, activated carbon, biological treatment, etc., as a pretreatment or advanced treatment method of refractory organic wastewater. Ozone oxidation Ozone is a strong oxidizing agent, fast reaction with reduced pollutants, easy to use, does not produce secondary pollution, can be used for sewage disinfection, color removal, deodorization, removal of organic matter and reduce COD. Using ozone oxidation alone is expensive and expensive, and its oxidation reaction is selective, and the oxidation effect on some halogenated hydrocarbons and pesticides is relatively poor. To this end, in recent years, the development of related combination technologies aimed at improving the efficiency of ozone oxidation, in which UV/O3, H2O2/O3, UV/H2O2/O3 and other combination methods can not only improve the oxidation rate and efficiency, but also can oxidize organic matter that is difficult to oxidize and degrade when ozone acts alone. Due to the low solubility of ozone in water, low production efficiency and high energy consumption, increasing the solubility of ozone in water, improving the utilization rate of ozone, and developing high efficiency and low energy consumption ozone generation devices have become the main research directions. Wet (catalytic) oxidation Wet (catalytic) oxidation method is at high temperature (150~350℃), high pressure (0.5~20 MPa), under the action of catalysts, the use of O2 or air as an oxidizing agent (add catalyst), (catalytic) oxidation of dissolved or suspended organic matter or reduced inorganic matter in the water, to achieve the purpose of removing pollutants. 

Wet air (catalytic) oxidation method can be applied to the treatment of municipal sludge and industrial wastewater such as acrylonitrile, coking, printing and dyeing, and pesticide wastewater containing phenols, chlorohydrocarbons, organophosphorus and organic sulfur compounds. Plasma water treatment technology Low temperature plasma water treatment technology, including high voltage pulse discharge plasma water treatment technology and glow discharge plasma water treatment technology, is the use of discharge directly in the aqueous solution to produce plasma, or the active particles in the gas discharge plasma into the water, can make the pollutants in the water thoroughly oxidized, decomposed. The direct pulse discharge in aqueous solution can be operated at normal temperature and pressure, and the chemical oxidizing species in situ can be oxidized and degraded organic matter in aqueous solution without adding catalyst during the whole discharge process. This technology is economical and effective for the treatment of low concentration organic matter. In addition, the type of reactor using pulsed discharge plasma water treatment technology can be flexibly adjusted, the operation process is simple, and the corresponding maintenance cost is low. Due to the limitation of discharge equipment, the energy efficiency of this process to degrade organic matter is low, and the application of plasma technology in water treatment is still in the research and development stage. Electrochemical (catalytic) oxidation Electrochemical (catalytic) oxidation technology directly degrades organic matter through anodic reaction, or produces oxidizing agents such as hydroxyl radicals (•OH) and ozone to degrade organic matter through anodic reaction. Electrochemical (catalytic) oxidation includes one -, two - and three-dimensional electrode systems. Due to the micro-electric field electrolysis of three-dimensional electrode system, it has been highly respected. The three-dimensional electrode is filled with granular or other detritus working electrode material between the electrodes of the traditional two-dimensional electrolytic cell, and the surface of the loaded material is charged to become the third pole, and the electrochemical reaction can occur on the surface of the working electrode material. Compared with the two-dimensional flat electrode, the three-dimensional electrode has a large specific surface, can increase the surface ratio of the electrolyzer, can provide a larger current intensity at a lower current density, small particle spacing and high mass transfer speed, high space-time conversion efficiency, so the current efficiency is high and the processing effect is good.

  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module