Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Industrial Networks Connecting Controllers via OPC

来源: | 作者:佚名 | 发布时间 :2023-11-13 | 459 次浏览: | Share:

Abstract

In order to modernize their infrastructure and keep up with the state of the art,

ABB Power Systems decided to replace the older controller AC450 with a new

generation of controllers called AC800M. Just like its predecessor, its main task is to

work as a sequencer in an otherwise mostly unchanging topology. Although the new

controller AC800M provides modern communication features and a sophisticated

application development system, it lacks of a communication interface compatible

with the residing controllers AC160. A hardware approach addressing this problem

is in development, but not available at this point of time. Thus the decision was

made to realize the connection using OPC, a widely spread and open software

communication interface standard with a high potential of reusability. In addition,

it was aimed at gaining additional knowledge about the OPC interface, which is

commonly used in industry.

In this thesis, we evaluate adequate hardware and software to realize this connection

and we have programmed the controllers with applications to evaluate its

performance and integrity. In addition, we are making considerations about redundancy

that is vital in automation business in order to increase reliability and

availability. We have shown that it is possible to interconnect controllers using

OPC with satisfactory average performance results. Due to high maximum round

trip times and high complexity when realizing redundancy, it is recommended to

use such a system for testing purposes or non-critical operational applications, but

not for critical systems. In this thesis we also identify and judge several alternative

ways of connection.


Introduction

This chapter will provide a rough overview of the problem treated by this Master’s

Thesis. All technical devices and expressions will be explained more precisely in

the next chapter. Please note that since this is a public thesis, it does not contain

sensitive company-internal data.

1.1 ABB Power Systems

ABB Power Systems is one of the world’s leading providers of infrastructure for

controlling combined cycle power stations and waste-to-energy plants. Such a

plant control infrastructure includes several hardware parts consisting of controllers,

input/output-boards and communication devices as well as many software components

to engineer, run, observe and analyze the power plant. A power plant control

system has to satisfy a broad variety of different needs, from the efficient and reliable

control of the turbines and associated supporting functions (such as lube oil)

to easy configuration and operation as well as to sophisticated analysis functions

addressing technical and economical aspects.

1.2 Problem Statement

Due to high investment costs, the technical management of power plants is a slowgoing

business with long life-cycles. Thus, a considerable amount of hardware

devices currently in use are tens of years old. For future applications within ABB

Power Systems it will be necessary to connect a controller of the newest series used

within ABB, Control IT AC800M, with an older controller of the type Advant

Controller 160 (AC160). The problem is that these two controllers do not share

a fast communication interface of similar type and therefore cannot communicate

directly. The standard communication intended for AC160 is Advant Fieldbus 100

(AF100). However, AC800M can support a whole range of buses except for AF100.

As a consequence, the communication must be implemented using some relaying

technique.

AF100 is a planned bus with a pre-determined scan table and thus meets realtime

requirements. Process Data Transfer is managed through Cyclic Data Packets

(CDPs). Each CDP is configured individually on the communication interface for

a certain signal identity, cycle time, size and direction. Each broadcasted CDP has

a unique signal identity, whereas receiving CDPs can have the same signal identity,

provided they are situated in different communication interfaces. That is, multiple

interfaces can receive the same CDP. The cycle time determines how often the data

of the CDP is transferred on the bus. When a CDP is transferred on the Advant

Fieldbus 100, the interval between consecutive transfers is always the same, the

cycle time. Thus, process data transfer is deterministic, regardless of which other

tasks the communication interfaces perform

AF100 is a planned bus with a pre-determined scan table and thus meets realtime

requirements. Process Data Transfer is managed through Cyclic Data Packets

(CDPs). Each CDP is configured individually on the communication interface for

a certain signal identity, cycle time, size and direction. Each broadcasted CDP has

a unique signal identity, whereas receiving CDPs can have the same signal identity,

provided they are situated in different communication interfaces. That is, multiple

interfaces can receive the same CDP. The cycle time determines how often the data

of the CDP is transferred on the bus. When a CDP is transferred on the Advant

Fieldbus 100, the interval between consecutive transfers is always the same, the

cycle time. Thus, process data transfer is deterministic, regardless of which other

tasks the communication interfaces perform

AF100 Communication

To establish connection to the AF100 fieldbus, we inserted an ABB CI527 PCI card

into the personal computer. The according AC100 OPC Server, which allows us to

access the AF100 bus, was installed with the 800xA for AC100 software extension

[19]. It is to mention that AC100 OPC Server allows access on bit-level, for example,

an integer value is presented by the server both as integer value and split up in 32

boolean values.

2.5.3 MMS Communication

An Intel Ethernet PCI card allowed the communication with the AC800M via MMS

on TCP/IP. The according AC800M OPC Server is part of the 800xA installation.

All communication over this port is performed via the Manufacturing Message

Specification (MMS) protocol running over TCP/IP, utilized for example by the

engineering tool to program the controller. The same connection can also be used

for controller to controller communication when having several MSS-ready devices.

Furthermore, the AC800M OPC Server communicates with the controller via the

same protocol and infrastructure, making available all variables by default [17].

2.5.4 Beckhoff PROFIBUS Communication

For the first PROFIBUS connection we used the FC3102 PCI card from Beckhoff.

This card was chosen due to its flexibility: It provides two ports in one PCI card

which can be freely adjusted either as master, slave or passive bus monitor [20


The programs we used to interconnect two OPC servers were Matrikon’s OPC

Data Manager (ODM) [23] and Kepware’s LinkMaster [24]. These programs called

OPC routers or OPC bridges are able to read data from one server and write

it to another. Both programs are similar in configuration and operation. The

functionality includes the definition of groups and update rates, input/output pairs,

dead-bands and quality checks. LinkMaster even allows to write one input value to

more than one output variables and to perform mathematical operations in between.

To make bulk configuration easier (e.g. with Excel), both programs allow to import

and export the configuration from and to comma separated values (CSV) files

We ran both bridging programs with a fully functional, time-limited testing

license provided for free by its vendors for the duration of our thesis.

2.5.7 Helper Programs

For setup and testing, a range of other software was used on the engineering/test

system computer. The most important programs are shortly specified here:

• MatrikonOPC Explorer is a freeware OPC client allowing to connect to

any compliant OPC server and displaying the value of chosen tags. It also

supports writing of variables and preserving settings. Furthermore, it allows

measuring the maximum update rate of the OPC servers it is connected to.

• Office 2003 of Microsoft was used for day to day work and configuration

tasks. Especially Excel was helpful for variable definition in AC800M and for

bulk configuring the bridging software using CSV files. Furthermore, with the


  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module
  • WESTINGHOUSE 5X00119G01 Ovation Module
  • Westinghouse 5X00105G14 Control Module
  • WESTINGHOUSE 5X00105G01 Ovation System Base Module
  • WESTINGHOUSE 5X00058G01 Ovation Controller
  • Westinghouse 5A26391H24 Control Module
  • WESTINGHOUSE 4D33942G01 Ovation I/O Communication Module
  • WESTINGHOUSE 3A99158G01 Ovation I/O Module
  • WESTINGHOUSE 3A99200G01 Control Module
  • WESTINGHOUSE 3A99132G02 Ovation System Power Module
  • WESTINGHOUSE 3A99132G01 Ovation Interface Module
  • WESTINGHOUSE 1X00416H01 Control Module
  • WESTINGHOUSE 1X00024H01 Ovation System Interface Module
  • WESTINGHOUSE 1C31227G02 Ovation I/O Module
  • Westinghouse 1C31194G03 Control Module
  • WESTINGHOUSE 1C31194G02 Ovation Controller Module
  • WESTINGHOUSE 1C31194G01 Ovation Controller Module
  • WESTINGHOUSE 1C31189G01 Control I O Module
  • WESTINGHOUSE 1C31179G02 Ovation Processor Module
  • WESTINGHOUSE 1C31164G02 Ovation Relay Output Module
  • Westinghouse 1C31161G02 RTD Input Module
  • WESTINGHOUSE 1C31150G01 Ovation DCS I/O Controller Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1C31129G03 Control Module
  • WESTINGHOUSE 1C31122G01 Process Controller | Ovation DCS Control Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1B30023H02 Control Module
  • WESTINGHOUSE 1B30035H01 Turbine Control System Module
  • WIDAP UFW30.156 6K8J175W0823 Power Resistor Technical Profile
  • WINGREEN IPB PCB V2.0_A01 03ZSTL6-00-201-RS Industrial Power Board
  • WINGREEN CANopen_ADAPTER V5.0_A01 03ZSTI-00-501-RS Module
  • WINGREEN PUIM V2.0 034STM4-00-200-RS Power Interface Module
  • WINGREEN DUDT_DETECTION_V2.0_A01 03ZSTJ0-00-201-RS Detection Control Board
  • WINGREEN LAIB V3.0_A00 034STN1-00-300-RS Embedded Industrial Motherboard
  • WINGREEN FAN_DETECTION V1.0_A05 03ZSTJ3-00-105Fan Monitoring Module
  • WINGREEN LAIB V3.0_A00 034STN1-01-300-RS Interface Board
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-00-501 Industrial Control Keyboard Module
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-01-501 Industrial Motherboard | Embedded Control Board
  • WINGREEN FPB_V3.0_A01 03ZSTJ1-00-301-RS Fieldbus Processor
  • WINGREEN DSPB_V4.0_A02 03ZSTI7-00-402-RS Digital Processing Board
  • WOHNER 31110 Cylindrical Fuse Holder
  • WOODHEAD APPLICOM PCI4000 PCI Communication Card Industrial DeviceNet CAN Bus Interface
  • Woodward 8440-1706 Industrial Control System Module
  • Woodward 8440-2052 H Synchronizer Load Share Module
  • Baldor KPD-TS12C-30E 12.1" Color TFT Touch Screen Ethernet HMI
  • Baldor KPD-TS10C-30E 10" Color TFT Touch Screen Operator Interface with Serial and Ethernet Interfaces
  • Baldor KPD-TS05C-30E 5.6" Color TFT Touch Screen with Serial and Ethernet Interface
  • Baldor KPD-TS05C-30 5.6 Inch Color TFT Touch Screen Serial Interface
  • Baldor KPD-TS05M-10 5.6" Monochrome Touch Screen Serial Interface HMI
  • Baldor KPD-TS03M-10 Monochrome Touch Screen Operator Interface
  • Baldor KPD-KG420-30 4x20 Graphic Display with 12 Function Keys - Serial Interface
  • Baldor KPD-KG420-20 4x20 Character Graphic Display Serial Interface
  • WOODWARD EASYGEN-3200-5 8440-1992 A Genset Controller
  • WOODWARD PEAK200-HVAC 8200-1501 C Version | Industrial Building Automation Controller
  • Woodward 8440-2052 easyGEN-3200 Genset Control Power Management
  • Woodward 8237-1246 + 5437-1119 Control System Module
  • WOODWARD SPM-D11 8440-1703 Overspeed Protection System Module
  • WOODWARD 8237-1369 Governor Control Module
  • Woodward 8237-1600 Digital Control Module
  • WOODWARD BUM60-1224-54-B-001-VC-A0-0093-0013-G003-0000 3522-1004 Industrial Control Module
  • WOODWARD 8200-1302 Genset Controller
  • Woodward 8901-457 Speed Control Module
  • WOODWARD 5501-465 Control Module
  • Woodward 5448-890 SPM-D10 Digital Control Module
  • WOODWARD 5437-1067A Turbine Governor Actuator
  • Woodward 8440-1666 B Digital Control Module
  • WOODWARD 8440-1706 A SPM-D11 Synchronous Phase Modulator Module
  • WOODWARD 5466-425 Programmable Automation Controller (PAC)
  • WOODWARD 5466-318- Industrial Gas Turbine Control Module
  • WOODWARD 5453-277 Digital Control Module
  • WOODWARD 5453-203 Digital Governor Control Module
  • WOODWARD 9907-1106 Pressure Converter
  • WOODWARD 5233-2089 Professional Industrial Control System Module
  • WOODWARD 9907-147 Power outage tripping overspeed protection system
  • WOODWARD 8237-1600 Digital Speed Control System
  • WOODWARD 8402-319 8402-119 microprocessor speed controller
  • Woodward 8237-1006 Digital Governor
  • WOODWARD 5501-471 Communication Module
  • WOODWARD 5466-258 Input/Output Module
  • WOODWARD 5501-467 Multi Protocol Communication Gateway and I/O Expansion Module
  • WOODWARD 5501-470 Digital microprocessor controller module
  • WOODWARD 9907-1200 Digital Governor
  • WOODWARD 8444-1067 High Performance Digital Microprocessor Controller Module
  • WOODWARD 8446-1019 Integrated Gas Engine Electronic Control System
  • WOODWARD 9907-162 Digital Engine Governor
  • WOODWARD 5466-316 Simulation Combination Module
  • WOODWARD 5464-414 Digital Speaker Sensor Module
  • XANTREX XFR40-70 DC power supply
  • XP POWER F8B6A4A6A6 power module
  • XP POWER F8B6D4A3G3 power supply
  • XYCOM XVME-674 VMEbus Single Slot CPU/Processor Module
  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor
  • Yaskawa JZNC-XPP02B Teaching Programmer
  • YASKAWA CACR-SR07BE12M servo drive
  • YASKAWA JAMSC-B2732V Advanced Drive Controller
  • YASKAWA JGSM-06 Controller
  • YASKAWA PCCF-H64MS 64MB Industrial Memory Module
  • YASKAWA CACR-02-TE1K servo driver
  • YASKAWA JAPMC-IQ2303 Controller Module
  • YASKAWA DDSCR-R84H Controller
  • YASKAWA JANCD-XTU01B circuit board
  • YASKAWA JANCD-XIO01 High Performance PC Input/Output (I/O) Board
  • YASKAWA JACP-317800 servo drive
  • XYCOM 120974 - Circuit Board
  • XYCOM 99298-200 - PC Control Card 99207A-001
  • XYCOM 99298-266 - CPU Board
  • XYCOM 99311-001 - Screen Display Ribbon Cable