Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Industrial Networks Connecting Controllers via OPC

来源: | 作者:佚名 | 发布时间 :2023-11-13 | 370 次浏览: | Share:

Abstract

In order to modernize their infrastructure and keep up with the state of the art,

ABB Power Systems decided to replace the older controller AC450 with a new

generation of controllers called AC800M. Just like its predecessor, its main task is to

work as a sequencer in an otherwise mostly unchanging topology. Although the new

controller AC800M provides modern communication features and a sophisticated

application development system, it lacks of a communication interface compatible

with the residing controllers AC160. A hardware approach addressing this problem

is in development, but not available at this point of time. Thus the decision was

made to realize the connection using OPC, a widely spread and open software

communication interface standard with a high potential of reusability. In addition,

it was aimed at gaining additional knowledge about the OPC interface, which is

commonly used in industry.

In this thesis, we evaluate adequate hardware and software to realize this connection

and we have programmed the controllers with applications to evaluate its

performance and integrity. In addition, we are making considerations about redundancy

that is vital in automation business in order to increase reliability and

availability. We have shown that it is possible to interconnect controllers using

OPC with satisfactory average performance results. Due to high maximum round

trip times and high complexity when realizing redundancy, it is recommended to

use such a system for testing purposes or non-critical operational applications, but

not for critical systems. In this thesis we also identify and judge several alternative

ways of connection.


Introduction

This chapter will provide a rough overview of the problem treated by this Master’s

Thesis. All technical devices and expressions will be explained more precisely in

the next chapter. Please note that since this is a public thesis, it does not contain

sensitive company-internal data.

1.1 ABB Power Systems

ABB Power Systems is one of the world’s leading providers of infrastructure for

controlling combined cycle power stations and waste-to-energy plants. Such a

plant control infrastructure includes several hardware parts consisting of controllers,

input/output-boards and communication devices as well as many software components

to engineer, run, observe and analyze the power plant. A power plant control

system has to satisfy a broad variety of different needs, from the efficient and reliable

control of the turbines and associated supporting functions (such as lube oil)

to easy configuration and operation as well as to sophisticated analysis functions

addressing technical and economical aspects.

1.2 Problem Statement

Due to high investment costs, the technical management of power plants is a slowgoing

business with long life-cycles. Thus, a considerable amount of hardware

devices currently in use are tens of years old. For future applications within ABB

Power Systems it will be necessary to connect a controller of the newest series used

within ABB, Control IT AC800M, with an older controller of the type Advant

Controller 160 (AC160). The problem is that these two controllers do not share

a fast communication interface of similar type and therefore cannot communicate

directly. The standard communication intended for AC160 is Advant Fieldbus 100

(AF100). However, AC800M can support a whole range of buses except for AF100.

As a consequence, the communication must be implemented using some relaying

technique.

AF100 is a planned bus with a pre-determined scan table and thus meets realtime

requirements. Process Data Transfer is managed through Cyclic Data Packets

(CDPs). Each CDP is configured individually on the communication interface for

a certain signal identity, cycle time, size and direction. Each broadcasted CDP has

a unique signal identity, whereas receiving CDPs can have the same signal identity,

provided they are situated in different communication interfaces. That is, multiple

interfaces can receive the same CDP. The cycle time determines how often the data

of the CDP is transferred on the bus. When a CDP is transferred on the Advant

Fieldbus 100, the interval between consecutive transfers is always the same, the

cycle time. Thus, process data transfer is deterministic, regardless of which other

tasks the communication interfaces perform

AF100 is a planned bus with a pre-determined scan table and thus meets realtime

requirements. Process Data Transfer is managed through Cyclic Data Packets

(CDPs). Each CDP is configured individually on the communication interface for

a certain signal identity, cycle time, size and direction. Each broadcasted CDP has

a unique signal identity, whereas receiving CDPs can have the same signal identity,

provided they are situated in different communication interfaces. That is, multiple

interfaces can receive the same CDP. The cycle time determines how often the data

of the CDP is transferred on the bus. When a CDP is transferred on the Advant

Fieldbus 100, the interval between consecutive transfers is always the same, the

cycle time. Thus, process data transfer is deterministic, regardless of which other

tasks the communication interfaces perform

AF100 Communication

To establish connection to the AF100 fieldbus, we inserted an ABB CI527 PCI card

into the personal computer. The according AC100 OPC Server, which allows us to

access the AF100 bus, was installed with the 800xA for AC100 software extension

[19]. It is to mention that AC100 OPC Server allows access on bit-level, for example,

an integer value is presented by the server both as integer value and split up in 32

boolean values.

2.5.3 MMS Communication

An Intel Ethernet PCI card allowed the communication with the AC800M via MMS

on TCP/IP. The according AC800M OPC Server is part of the 800xA installation.

All communication over this port is performed via the Manufacturing Message

Specification (MMS) protocol running over TCP/IP, utilized for example by the

engineering tool to program the controller. The same connection can also be used

for controller to controller communication when having several MSS-ready devices.

Furthermore, the AC800M OPC Server communicates with the controller via the

same protocol and infrastructure, making available all variables by default [17].

2.5.4 Beckhoff PROFIBUS Communication

For the first PROFIBUS connection we used the FC3102 PCI card from Beckhoff.

This card was chosen due to its flexibility: It provides two ports in one PCI card

which can be freely adjusted either as master, slave or passive bus monitor [20


The programs we used to interconnect two OPC servers were Matrikon’s OPC

Data Manager (ODM) [23] and Kepware’s LinkMaster [24]. These programs called

OPC routers or OPC bridges are able to read data from one server and write

it to another. Both programs are similar in configuration and operation. The

functionality includes the definition of groups and update rates, input/output pairs,

dead-bands and quality checks. LinkMaster even allows to write one input value to

more than one output variables and to perform mathematical operations in between.

To make bulk configuration easier (e.g. with Excel), both programs allow to import

and export the configuration from and to comma separated values (CSV) files

We ran both bridging programs with a fully functional, time-limited testing

license provided for free by its vendors for the duration of our thesis.

2.5.7 Helper Programs

For setup and testing, a range of other software was used on the engineering/test

system computer. The most important programs are shortly specified here:

• MatrikonOPC Explorer is a freeware OPC client allowing to connect to

any compliant OPC server and displaying the value of chosen tags. It also

supports writing of variables and preserving settings. Furthermore, it allows

measuring the maximum update rate of the OPC servers it is connected to.

• Office 2003 of Microsoft was used for day to day work and configuration

tasks. Especially Excel was helpful for variable definition in AC800M and for

bulk configuring the bridging software using CSV files. Furthermore, with the


  • ABB SUE3000 1VCF750090R0804 servo drive module
  • ABB PFRL101C-1.0KN 3BSE023316R1002 radial weighing sensor
  • ABB UNS4684A-P, V.1 HIEE30514R00R00001 Communication Module
  • ABB PVD164A2059 3BHE014340R2059 excitation controller
  • ABB 3BHE046836R0102 GFD563A102 Analog I/O Module
  • ABB PFCL201CE 10KN 3BSX105983-100 Weighing Sensor
  • ABB PFCL201C 20KN 3BSE023409R20 Weighing Sensor
  • ABB 216VC62A HESG324442R112/F Signal Digital Processor
  • ABB 216EA61B HESG448230R1/G High Voltage DC Converter Valve
  • ABB 216AB61 HESG324013R101 digital output unit
  • ABB REF542 1VCR007346 G0028 Intelligent Sensor
  • ABB INSUMMCU2 MCU2A02V24 Intelligent Motor Control Unit
  • ABB MCU2A01C0-4 motor control unit
  • ABB PDP22-FBP fieldbus interface
  • ABB PNI800A Network Interface Module
  • ABB 3BHE039724R0C3D PPD513AOC 100440 Controller
  • ABB SDCS-CON-2-COAAT 3ADT220090R2 Controller
  • ABB CI543 communication interface
  • ABB PM510V08 3BSE00B373R1 processor module
  • ABB UNITRAL1010 3BHE035301R0001 UNS0121A-Z-V1 Exciter
  • ABB CI873K01 3BSE058899R1 Ethernet/IP interface module
  • ABB DYTP600A 61430001-ZY Signal Processor Module
  • ABB REF615C-E HCFFAEAGAABC2BAA11E feeder protection and control
  • ABB PCD235C101 3BHE057901R0101 Expansion Adapter
  • ABB UAD149A0001 3BHE014135R0001 excitation controller
  • ABB UAD149A1501 3BHE014135R1501 Controller Module
  • ABB REF545KC133AAAA protective relay
  • ABB PFSA103D 3BSE002492R0001 intermediate relay
  • ABB KUC321AE HIEE300698R1 power module
  • ABB PFVK135 PLC signal processing board
  • HIMA X-CPU 01 processor module
  • ABB TU811 Compact Module Terminal Unit
  • ABB REM610C55HCNN02 motor protection relay
  • ABB IMRIO02 Remote Input/Output Module
  • ABB PFEA113-20 3BSE050092R0 Tension Electronic Equipment
  • ABB UFC911B108 3BHE037864R0108 communication interface
  • ABB REU615E_D Voltage Protection and Control Relay
  • ABB PPD512A10-150000 Controller
  • ABB 5SHX1445H0001 3BHL0000391P0101 3BHB003230R0101 5SXE05-0152 module
  • ABB ICST08A9 Modular Controller
  • ABB 1SVR011718R2500 Analog Converter
  • ABB TB807 3BSE008538R1 module bus terminator
  • ABB PM511 processor module
  • ABB PP877 3BSE069272R2 Industrial Touch Screen
  • ABB EasyLine EL3020 Continuous Gas Analyzer
  • ABB PFEA111 series optical discs
  • ABB DSTD150 I/O connection terminal unit
  • ABB AO801 Analog Output Module
  • ABB PM866 controller
  • ABB 408368B IAM module
  • ABB 3HAC025562-001/06 capacitor unit
  • ABB IEPAS02 power module
  • ABB MSR04X1 serial communication module
  • ABB ICSI16E1 Digital Input Module
  • ABB 3HAC026271-001/DSQC646 Robot Drive
  • ABB SPBRC400 PLC module/rack
  • ABB DSQC355A Analog Input/Output Module
  • ABB PFEA111-65 Tension Controller
  • ABB PM645B processor module
  • ABB FS450R12KE3/AGDR-71C driver combination
  • ABB D2D146-AA28-28 fan
  • ABB PPD513A0E110110 3BHE039724R0E41 Controller
  • ABB PFVO102 PFVO142 3BSE023732R1 Controller Module
  • ABB XFD213A 3BHE02812R0001 Speed Sensor Interface
  • ABB 560PSU02 1KGT011900R0001 power supply device
  • ABB 4LA41100102V1.2 KB2 Broken Board Detector
  • ABB 3BHE023784R1023 PP D113 B01-10-150000 Controller Module
  • ABB 3BHE02294R0103 GFD233A103 Multi functional Control Machine
  • ABB 500MBA02 1MRB150003R003 1MRB200053/M Controller Module
  • ABB 500MBA02 1MRB150003R000/B drive module
  • ABB 500MBA01 1MRB150003R002 1MRB200053/L control card
  • ABB CH-3185 3BHL000986P1006 Controller
  • ABB 969.105EBG 540KKS166899 Controller
  • ABB WE-73-10/CH 64421956 THYRISTOR MODUL
  • ABB 12556917-738385 RADOX GKW cable
  • ABB AF400-30 contactor
  • ABB 103.32125AF 8431160021 connector
  • ABB MTA025 EBG92026 motor terminal adapter
  • ABB 3BHE034863R001 UDC920BE01 Analog Input Module
  • ABB 3BHB009175R0001 Automation Module
  • ABB 3BHB004791R0101 Controller Module
  • ABB HIES208441R interface module
  • ABB SCYC51220 multi-channel pulse trigger board
  • ABB SCYC51213 63911607C multi-channel pulse trigger board
  • ABB SCYC51204 63912476 Transient Absorber Module
  • ABB SCYC51204 63912476C Advanced Pulse Trigger Board
  • ABB TNR 25590 TNR25590 Thermal Overload Relay
  • ABB KTS 011 KTS011 Compact Thermostat
  • ABB KTO 011 KTO011 Compact DIN Rail Thermostat
  • ABB B09261 Electronic Motor Protection Relay
  • ABB LT2005-S/SP19 Programmable Logic Controller
  • ABB RM602024 intermediate relay
  • ABB RM302024 Relay
  • ABB GRBTU-01 3BSE01317R1 DC motor inverter module
  • ABB SZ4127.000 door switch
  • ABB CT-APS.22 1SVR630180R3300 Controller
  • ABB NTAC-02 58967441E pulse encoder
  • ABB BN5930 safety relay
  • ABB UAC389 HIEE410506P104 Industrial Automation Controller
  • ABB UFC921A 3BHE024856P201 industrial control module
  • ABB XVC724BE102 3BHE009017R0102 circuit board
  • ABB LDMUI-01 61320946 High Performance LD MU I/O Module
  • ABB 704.910.4 contact block strip
  • ABB 704.910.5 position switch
  • ABB IEC/EN 60947 contactor
  • ABB E-UK terminal fixing components
  • ABB DIL EM-01-G contactor
  • ABB 90.21 relay
  • ABB 55.34.9.024.0040 Timer Relay
  • ABB 60.13.9.024.0040 power relay
  • ABB KD2406PTBX 24V DC terminal block module
  • ABB PS201PRE fuse module
  • ABB ZM-16-PKZ2 contactor
  • ABB PKZMO-10-T motor protection circuit breaker
  • ABB ZM-40-PKZ2 motor protection stroke block
  • ABB FAZ-C6/1 Miniature circuit breaker
  • ABB FAZ-C10/1 miniature circuit breaker
  • ABB FAZ-C2/1 Circuit Breaker
  • ABB FAZ-C2/2-DC Circuit Breaker
  • ABB FAZ-XHIN11 auxiliary contact equipment
  • ABB Z-NTS neutral wire circuit breaker
  • ABB M3V4-1/0-0 64122088 Input/Output Module
  • ABB NDBU-95C 64008366D control module
  • ABB LWN2660-6EG Automation Control Module
  • ABB LWN2660-6E power supply
  • ABB FPX86-9377-A capacitor
  • ABB MR627 P89627-0-2333400-300-401-601-701 Motor Control Unit
  • ABB 57619414 A 1/2 connector module