Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Exploring the Advanced Physical Layer of Ethernet

来源: | 作者:佚名 | 发布时间 :2023-11-15 | 520 次浏览: | Share:

ABB, together with other leading automation companies and international standards organizations, has developed a field-level Ethernet connection for hazardous areas in the process industry – the Ethernet Advanced Physical Layer. By expanding its application to OPC UA based fusion networks, it helps the industry cross the boundaries between IT/OT and achieve seamless integration from the field to the cloud.With the rapid development of communication and network technology, process automation technology is undergoing continuous technological iteration and application transformation. Data and transmission have become an important driving force for the advancement of the industrial Internet of Things.

The Development History of Data Transmission Technology

In the early days, the main method of measuring process values was to connect field instruments to a distributed control system (DCS), which relied on simple wiring to convert analog measurements into 4-20 mA analog signals. Afterwards, HART technology introduced digital communication on the basis of analog signals, thereby maintaining the simplicity advantage of traditional wiring. Despite being digitized, bandwidth and communication speed are still extremely low.

The fully digital serial fieldbus technology introduced in the 1990s became the preferred technology in the early years of the 21st century. Due to increased bandwidth, this technology requires a gateway and is too complex in engineering, operation, and maintenance to truly meet the requirements of process industry suppliers.

To achieve a fully digital future, the process industry needs a technology with Ethernet level bandwidth and communication speed that is easy to design, operate, and maintain, while also expanding to on-site devices and operating in hazardous areas.

Expanding Ethernet to the Process Industry

Ethernet has become a widely recognized wired digital technology standard in many industries due to its high bandwidth and speed, with a complete set of standardized tools for installation, deployment, troubleshooting, and diagnosis. However, the application of Ethernet in the process industry is relatively limited. There are two prominent reasons: traditional communication technology dominates due to its simplicity and cost-effectiveness; There are hazardous conditions in many process industrial environments.

In 2015, with the support of 12 leading automation companies such as ABB and 4 international standard development organizations, the Advanced Physical Layer (APL) project was launched. In 2018, they determined that any sustainable solution should be fully compatible, meet the IEEE 802.3cg Ethernet standard, and meet specific standards, including dual wire cables, long cable lines, the same cable for power supply and communication, and support all explosion-proof technologies, including intrinsic safety Easy installation, etc.Ethernet Advanced Physical Layer (Ethernet-APL) is the result of nearly a decade of expanding Ethernet to the field. The network structure of Ethernet-APL is simple, does not require protocol conversion, and has high compatibility and ease of use. It has a speed of 10 Mbps and combines the simplicity of 4 to 20 mA signal connection with Ethernet level bandwidth suitable for instrument communication and multi-protocol support. By connecting to widely distributed dual wire loop powered field instruments in hazardous areas, Ethernet APL can improve communication performance without compromising safety.

This milestone technology, due to its characteristics of high-speed, safety, compatibility, and interoperability, has groundbreaking catered to the new needs of the Industry 4.0 era. Many experts in academia and industry are optimistic about its broad application prospects.

Peng Yu

Technical Advisor, Shanghai Institute of Industrial Automation Instrumentation

Honorary Chairman of PLCopen China Organization

In the wired and wireless physical layers of Ethernet, the Advanced Physical Layer (APL) is undoubtedly the most suitable underlying communication technology for the future process industry. It successfully solves the problem of using a pair of twisted pairs to transmit Ethernet signals over long distances, while supplying power to on-site instruments and actuators, and also ensuring the intrinsic safety of working in various hazardous areas. Its sufficient bandwidth and full duplex/bidirectional communication ensure that automation instruments and devices can receive control commands in real-time, while also transmitting process parameters, maintenance data, and engineering data to the control system, upper level maintenance and optimization system. In short, APL enables the collection, evaluation, and correlation of data from different sources and types, which is a powerful guarantee for the underlying data of digital transformation in the process industry.

With reliable on-site real-time data, the digital twin of process operation optimization and predictive maintenance can be implemented; With reliable communication technology, it is convenient and feasible to use centralized systems for remote monitoring of process facilities distributed in different geographical locations; Once a sufficiently large time series data pool is collected, the correlation between device failures and other events can be identified by human experts or artificial intelligence analysis, enabling predictive maintenance and other efficiency. In addition, aggregating data from processes, engineering, and maintenance throughout the entire lifecycle of assets can uncover in-depth insights that help further optimize production.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module