Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Development status and prospect analysis of tower solar thermal power generation technology in China

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 1184 次浏览: | Share:

Beijing Yanqing Tower Experimental Demonstration Power Station, jointly designed and built by the Institute of Electrical Engineering of the Chinese Academy of Sciences and other units, successfully generated electricity for the first time in August 2012, with an installed capacity of 1MW. The heliocaptor consists of 100 sets with an area of 100m2, the heat collection tower is 118m high, and the cavity type heat absorber is adopted. The heat transfer medium is water/steam. The power station is the first MW-class tower solar power station independently developed, designed and built in China.

Delingha 50MW tower solar thermal Power Station Phase I 10MW project of China Control Group is the first commercial demonstration power station of tower power generation in China, officially put into operation in July 2013, the power station is divided into east and west towers of 5MW each, the mirror field is composed of 30,000 2m2 heliocorters. In order to promote the commercialization of the tower molten salt technology, the molten salt system transformation of the 10MW project is currently under way.

The first flight of energy saving Dunhuang 10MW molten salt tower power station started construction at the end of August 2014, is currently in the installation and commissioning period, the project with heat storage 15 hours design, if completed on schedule, will be China's first tower solar thermal power station with heat storage, its heliostat structure design is similar to Gemasolar power station, composed of 35 mirrors, According to the order of 5×7, a single heliostat lighting area of 120 square meters, a total of 1525 sets of heliostats.

3 Key Technologies

3.1 Heliostat and its control technology

Heliostat is the concentrating unit of the tower solar thermal power generation system, which accurately reflects the solar radiation to the heat absorber on the top of the concentrating tower through the tracking system. In order to ensure the normal and efficient operation of the whole system, the heliostat must have high reflectance and positioning accuracy. Because of its long-term exposure to the outdoor environment, it also needs to have certain corrosion resistance, wear resistance, deformation resistance, easy cleaning and other characteristics. The mirror field cost generally accounts for 40% to 50% of the investment cost of the entire tower solar thermal power station.

At present, research on tower heliostat mainly focuses on structural design and mechanical analysis of heliostat bracket, weather resistance of silver-coated mirror, combination of bracket and mirror, high-precision transmission system and control system, and optimization design of heliostat field [2].

3.2 Endothermic materials and equipment

In the tower solar thermal power generation, the solar receiver is the key to achieve power generation, which directly converts the solar energy captured, reflected and focused by the heliostat into available high temperature heat energy, providing a power source for the generator set, so as to achieve thermal power generation. According to the structure of the heat absorber, it is divided into tubular heat absorber and volumetric heat absorber. The heat absorption and heat transfer medium mainly includes water/steam, molten salt and air. At present, tubular molten salt heat absorber is widely favored by the industry.

The advantage of the tubular solar receiver is that it can receive the reflected and focused sunlight from the heliostat around the tower in a 360° range, which is conducive to the layout design of the heliostat mirror field and the large-scale utilization of solar energy. The internal structure design of the heat absorber, the research on the high temperature resistance and corrosion resistance of the metal material of the heat exchange tube, the research on the high temperature resistant selective absorbing coating material of the tube wall, the high temperature decomposition and corrosion of the molten salt in the heat absorber and the low temperature solidification are the key core technologies.

3.3 Heat transfer and storage technology

Molten salt is often used as heat storage and heat transfer medium in tower solar thermal power stations. The flow and heat transfer characteristics of molten salt are directly related to the design and arrangement of heat storage and heat transfer circulation system. The key technologies of molten salt heat storage and heat transfer include the development of low-temperature molten salt, the preparation of high-temperature heat storage materials, and the design and arrangement of molten salt heat transfer and heat storage system equipment [3,4].

In particular, the preheating and insulation, dredging and plugging technology of the pipeline system of the heat transfer and storage unit, the design and manufacture of the high-flow high-temperature molten salt pump that can work stably for a long time at a working temperature above 600℃, and the reliability of the whole molten salt system are still the focus of the research of the tower solar thermal power station.

4 Development prospect of tower solar thermal power generation in China

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card