Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Development status and prospect analysis of tower solar thermal power generation technology in China

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 1182 次浏览: | Share:

1 Technical characteristics of tower solar thermal

Power generation principle: The heliostat is used to focus the sunlight on the heat absorber located at the top of the heat collection tower, heat the heat transfer medium in the heat absorber to generate heat energy, and then generate high temperature steam through the heat exchange system to drive the turbine to generate power. The composition of tower solar energy mainly includes: heliostat, heat absorber, heat exchanger, high and low temperature storage tank, heat collection tower, turbine generator set and so on. The heat transfer working medium can be air, water/steam or molten salt.

The energy concentration process of the tower technology is completed by reflecting the light at one time, the method is simple and effective, and the concentration ratio is high, and it is easy to reach a relatively high working temperature. The more the number of heliostat in the mirror field, the greater the concentration ratio, the higher the heat collection temperature of the heat absorber, and the higher the photothermal conversion efficiency.

2 Development status of tower solar thermal power generation at home and abroad

2.1 Foreign Countries

In 1950, the former Soviet Union designed the world's first small tower solar thermal power generation test power station, and conducted basic exploration and research on solar thermal power generation technology. During the 10 years from 1981 to 1991, due to the impact of the oil crisis, alternative energy technology rose in the world, and other industrial developed countries also invested in the construction of a number of experimental power stations.

According to incomplete statistics, at that time, more than 20 megawatt-level solar thermal power test stations of various forms with an installed capacity of more than 500kW were built around the world, of which tower power stations were the main form with a maximum power generation of 80MW. Because the investment per unit capacity is too large, the construction of solar thermal power stations is gradually cold.

In the past two years, solar thermal power generation has once again become a hot investment spot in the field of international renewable energy. Relevant data show that the global trend of new clean energy investment to large-scale solar thermal power generation is becoming increasingly obvious, the scale of project construction is also getting larger and larger, more and more businesses will focus on tower solar thermal power generation.

At present, the international Tower solar thermal power stations that have been put into commercial operation are PS10, PS20 and Gemasolar in Spain, and SierraSun Tower power station, Ivanpah power station and Crescent Sand Dune power station in the United States.

Gemasolar is the world's first 24-hour continuous power generation tower solar thermal power station, officially put into operation in October 2011, installed capacity of 19.9 megawatts, annual power generation of 110 million degrees, annual operating hours of 6450 hours. The concentrator system of Gemasolar power station consists of more than 2,600 concentrator panels spread over 185 hectares of open space. The light energy received by the individual mirror plates is accumulated in a central receiver, which heats the molten salt tank and forms high-temperature pressurized vapors through heat conduction to drive a turbine to generate electricity.

Ivanpah is currently the largest tower power station, officially connected to the grid on February 13, 2014, with a total installed capacity of 392MW, consisting of three tower power stations with installed capacity of 133MW, 133MW and 126MW respectively, with an annual generating capacity of 1079GWh.

Ivanpah Power Station has a maximum installed capacity of 133MW per tower, which is the first time to realize the development of a 100-MW tower power station, and verifies the feasibility of large-scale development of tower power stations from the practical level. Ivanpah is a water-working medium photothermal power station without heat storage system. Due to local water shortage, an air-cooling system is adopted, and the water consumption per KWH is 0.11L, which greatly saves water consumption compared with the water-cooling system.

The New Moon Dune Power Station in the United States is the world's first 100MW molten salt tower power station. It was connected to the grid on February 22, 2016, with an installed capacity of 110MW and a 10-hour heat storage system. The designed annual power generation capacity is 500,000 MWh. As the first 100 MW commercial large-scale tower molten salt power plant, the current power generation situation of Crescent Dune has not reached the expected design.

2.2 Domestic

Compared with foreign countries, China's solar thermal power generation is still in the initial stage of industrialization, and the mastery and research of its technology lag behind. In order to explore the research and development of tower solar thermal power generation system, the first 70kW tower experimental demonstration power station in China began construction in 2004 with the support of Nanjing Science and Technology Bureau. The heliostat field of the power station consists of 32 sets of 20m2 heliostat, the heat collection tower is 33m high, and the heat absorber is provided by Israel with pressure cavity receiver.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card