Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What is the energy conversion in the process of power generation in thermal power plants?

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 1068 次浏览: | Share:

Current technology

Nuclear reactors in operation today can be divided into two main categories according to the method of fission, and within each category, several sub-categories can be divided according to the means of controlling fission:

Nuclear fission reactors obtain nuclear energy through controlled nuclear fission, which is released from the nuclear fuel in the form of heat.

The current nuclear power plants are all nuclear fission reactors, which is also the main content of this paragraph. The output power of a nuclear fission reactor is adjustable. Nuclear fission reactors can also be classified by generation, such as first, second and third generation nuclear reactors. Today's standard nuclear reactors are pressurized water reactors (PWR).

The difference between fast and thermal nuclear reactors will be discussed later. In general, fast reactors produce less nuclear waste and have a much shorter half-life than other types of reactors, but they are difficult to build and expensive to operate. Fast neutron reactors can also be used as proliferative reactors, while thermal reactors generally cannot.

A. Pressurized water Nuclear Reactor (PWR)

Such reactors are cooled entirely by high-pressure water and slow down neutrons (even at extremely high temperatures). Most reactors in operation fall into this category. Although the reactor at Three Mile Island was of this type, it is generally considered the safest. This is a thermal nuclear reactor. 

B. Boiling Water Reactor (BWR)

These reactors also use light water as a coolant and moderator, but the water pressure is slightly lower than the former type. Because of this, the water can boil inside the reactor, so the reactor is more efficient, simpler, and

B. Boiling Water Reactor (BWR)

These reactors also use light water as a coolant and moderator, but the water pressure is slightly lower than the former type. Because of this, water can boil inside the reactor, so the reactor is more thermal efficient, simpler, and potentially safer. The disadvantage is that boiling water raises the water pressure, so the radioactive water could suddenly leak out. Such reactors also account for a large proportion of the reactors currently in operation. This is a thermal nuclear reactor. The reactors at Taiwan's Nuclear power plants No. 1 and No. 2 are of this type.

C. Pressurized Heavy water nuclear Reactor (PHWR)

It's a Canadian-designed reactor, or CANDU, that uses high-pressure heavy water to cool and slow down. The nuclear fuel for such reactors is not contained in a single pressure chamber, but in hundreds of pressure tubes. This reactor uses natural uranium as nuclear fuel and is a thermal neutron nuclear reactor. This type of reactor allows the addition of nuclear fuel when the output power is turned on at maximum, so it can use nuclear fuel efficiently (because it can be controlled precisely). Most of the pressurized water reactors are located in Canada, with some sold to Argentina, China, India (not party to the Nuclear Non-Proliferation Treaty), Pakistan (not party to the Nuclear Non-Proliferation Treaty), Romania, and South Korea. India also operated a number of pressurized water nuclear reactors (commonly referred to as "CANDU variants") after its first nuclear test explosion. 

D. Graphite light Water Nuclear Reactor (RBMK)

It's a Soviet design that produces plutonium as well as exporting electricity. The reactors are cooled by water and slowed by graphite. RBMK and DW have some aspects in common, that is, nuclear fuel can be replenished in operation, and both use pressure tubes. But unlike the pressurized water type, these reactors are unstable and too large to be housed in a building with an outer containment vessel, which is dangerous. The RBMK also had some significant safety flaws, although some of these were corrected after the Chernobyl accident. RBMK is generally considered to be one of the most dangerous nuclear reactor types. Chernobyl has four RBMK reactors.

E. Gas-cooled Reactors (GCR) and Advanced Gas-cooled Reactors (AGCR)

The reactor uses graphite as a moderator and carbon dioxide as a coolant. It operates at a higher temperature than a pressurized water reactor and is therefore more thermal efficient. A proportion of operating reactors fall into this category, most of them in the UK. Older nuclear power plants (i.e., Magnox-type) have been or will soon be closed. But advanced gas-cooled reactors will continue to operate for another 10 to 20 years. This is a thermal nuclear reactor. The cost of shutting down such plants is high because of the large reactor cores.

F. Liquid Metal Fast Breeder Nuclear Reactor (LMFBR)

Such reactors use liquid metal as a coolant rather than a moderator at all, and produce more nuclear fuel than they consume while generating electricity. Such reactors are close to pressurized water reactors in efficiency, and the operating pressure does not need to be too high, because the liquid metal does not need to be pressurized even at extremely high temperatures. The Superphoenix nuclear power plant in France and the Fermi-I nuclear power plant in the United States use such reactors. Japan's Monjusri nuclear power plant, which suffered a liquid sodium leak in 1995, is expected to restart operations in 2008. All three plants use liquid sodium. This is a fast neutron reactor rather than a thermal reactor. There are two types of liquid metal reactors:

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card